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contributions to sequential analysis
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ABSTRACT 
Gary Lorden provided several fundamental and novel insights into 
sequential hypothesis testing and change point detection. In this art
icle, we provide an overview of Lorden’s contributions in the context 
of existing results in those areas and some extensions made possible 
by Lorden’s work. We also mention some of Lorden’s significant con
sulting work, including as an expert witness and for NASA, the enter
tainment industry, and Major League Baseball.
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1. INTRODUCTION

The purpose of this article is to provide an overview of Gary Lorden’s significant contri
butions to the field of sequential analysis. But first, to give a sense of Lorden’s remark
able life and personality, in Sections 1.1 and 1.2 we give a brief biography of Lorden 
and highlight some of his extra-academic work.

1.1. Biographical Sketch

Gary Allen Lorden was born in Los Angeles, California, on June 10, 1941. Lorden 
entered Caltech as a freshman in 1958, and Lorden’s undergraduate contemporaries at 
Caltech included a number of others who would also go on to be notable statisticians, 
including Larry Brown, Peter Bickel, Brad Efron, and Carl Morris. Lorden received a 
B.S. from Caltech in 1962 and a Ph.D. from Cornell University in 1966 under the 
supervision of Jack Kiefer. After a faculty position at Northwestern University, Lorden 
rejoined Caltech in 1968, where he stayed until his retirement in 2009. Figure 1 shows 
some photos of Lorden at different stages of his career.

Beyond research and teaching, Lorden was known for his leadership roles at Caltech. 
He served as dean of students from 1984 to 1988, vice president for student affairs from 
1989 to 1998, and acting vice president for student affairs in 2002. He was executive 
officer (Caltech’s version of department chair) for the mathematics department from 
2003 to 2006.
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Gary and his wife, Louise, were both accomplished pianists and enjoyed playing and 
singing duets for guests, often students, at their home in Pasadena. They also enjoyed 
showing students how well they danced together. Lorden also liked to act and regularly 
participated in plays put on at Caltech.

Lorden passed away on October 25, 2023, at the age of 82. He is survived by his chil
dren Lisa and Diana; his wife Louise passed away in 2015.

1.2. Consulting, Hollywood, and Major League Baseball

Lorden was known for his creativity and generosity of ideas, so it is not surprising that 
throughout his career he was in demand as an academic collaborator and consultant, 
and much of his early work on change point detection arose from collaborations with 
researchers at the Jet Propulsion Laboratory in Pasadena, California, which is managed 
for NASA by Lorden’s home institution of Caltech.

But Lorden was also an uncommonly effective, engaging, and entertaining communi
cator, and this caused many outside academics to seek him out as a consultant, too. 
Lorden would routinely be interviewed by reporters and appear on the evening news, 
explaining things like the odds of winning the latest lottery jackpot. Lorden also 
“moonlighted” as an expert witness in court cases involving statistics and math.

Figure 1. Counterclockwise from top: Gary Lorden as an undergraduate at Caltech in 1959, lecturing 
in 1987, and lecturing circa 2010. Photos courtesy of Caltech.
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Eventually Hollywood came calling, and in 2005 Lorden was asked to be the math 
consultant for a (then) new CBS television show called NUMB3RS. In a bit of art imitat
ing life, the show was about a Caltech professor who used math to help the FBI solve 
crimes, and Lorden worked with the show’s writers to accurately incorporate mathemat
ical topics into the storylines. An aspect of the relationship that Lorden particularly rel
ished, which he related to us, was that the show’s creators initially considered setting 
the show at MIT (Caltech’s rival) but decided to change the venue after learning more 
about Caltech and Lorden. The show would go on to be a hit, running for 118 episodes 
over six seasons. If a viewer of the show knew something of Lorden’s work, they could 
see some of his favorite topics (and many topics discussed below in this article) woven 
into the episodes’ plot lines, including change point detection, hypothesis testing, 
Bayesian methods, gambling math, cryptography, and sports statistics, among others. 
With Keith Devlin, Lorden wrote a popular general audience book (Devlin and Lorden 
2007) on the mathematical topics appearing in the show. For example, Devlin and 
Lorden (2007, ch. 4) explained the basic concept of change point detection—the deter
mination that a definite change has occurred, as opposed to normal fluctuations—and 
went on to discuss this method’s importance for quick response to potential bioterrorist 
attacks and for designing efficient algorithms to pinpoint various kinds of criminal 
activity, such as to detect an increase in crime rates in certain geographical areas and to 
track changes in financial transactions that could be criminal.

Another high-profile consulting project came in 2018 when Lorden, Bartroff, and others 
were chosen by the commissioner of Major League Baseball (MLB) to be statisticians on a 
committee with physicists, engineers, and baseball experts studying MLB’s then-recent 
surge in home runs. The committee studied vast amounts of Statcast game data, as well as 
laboratory tests on the properties of the baseball that can affect home run production, 
including Lorden traveling to Costa Rica to inspect baseball manufacturer Rawlings’ pro
duction plant there. The committee made recommendations (Nathan et al. 2018) to MLB 
and Rawlings for future monitoring, testing, and storage of baseballs.

1.3. The Remainder of This Article

The remainder of this article is devoted to describing Lorden’s fundamental and far- 
reaching results in sequential hypothesis testing and change point detection, which we 
aim to present within the context of those areas. Beginning with hypothesis testing in 
Section 2, after describing the testing setup and optimality of the sequential probability 
ratio test (SPRT) in Section 2.1.1, Lorden’s findings on multiparameter testing and their 
application to near-optimality of the multihypothesis SPRT are covered in Section 2.1.2. 
We then cover Lorden’s fundamental inequality for excess over the boundary in Section 
2.2. Additionally, we explore Lorden’s contributions to the Keifer-Weiss problem of 
testing while minimizing the expected sample size at a parameter value between the 
hypotheses and other results stemming from his work (Section 2.3), optimal testing of 
composite hypotheses (Section 2.4), and optimal multistage testing (Section 2.5). In 
Section 3 we cover Lorden’s fundamental minimax change point detection theory and 
related advancements in the field.

SEQUENTIAL ANALYSIS 381



2. SEQUENTIAL HYPOTHESIS TESTING

In this section, we delve into Lorden’s contributions to hypothesis testing, encompassing 
the challenges of excess over the boundaries of random walks, the formulation of nearly 
optimal multi-decision sequential rules (including multihypothesis tests and multistage 
tests), and the modified Keifer-Weiss problem. These topics were extensively explored in 
the seminal Lorden’s papers (Lorden 1967, 1970, 1972, 1973, 1976, 1977b, 1980, 1983).

2.1. Multihypothesis Testing

2.1.1. The General Multihypothesis Testing Problem
One of Lorden’s major fundamental contributions is the proposal of a multihypothesis 
sequential test that achieves third-order asymptotic optimality in the independent and 
identically distributed (i.i.d.) case, akin to Wald’s SPRT when error probabilities are 
small. Further details will be provided in Subsection 2.1.2. Additionally, extensions to a 
more general non-i.i.d. case, where observations may exhibit dependency and nonidenti
cal distributions, have been explored in Lai (1981), Tartakovsky (1998, 2020, 2024), and 
Tartakovsky, Nikiforov, and Basseville (2015).

We begin with formulating the following multihypothesis testing problem as addressed 
by Lorden (1977b). Let ðX, F, Fn, PÞ, n 2 Zþ ¼ f0, 1, 2, :::g, be a filtered probability 
space, where the sub-r-algebra Fn ¼ rðXnÞ of F is generated by the sequence of random 
variables Xn ¼ fXt, 16 t6 ng observed up to time n, which is defined on the space 
ðX, FÞ (F0 is trivial). The focus lies on the N-decision problem of testing the hypotheses 
Hi : P ¼ Pi, i ¼ 1, :::, N, where P1, :::, PN are given probability measures assumed to be 
locally mutually absolutely continuous; that is, their restrictions Pn

i ¼ PjFn 
and Pn

j ¼

PjjFn 
to Fn are equivalent for all 16 n <1 and all i, j ¼ 1, :::, N, i 6¼ j: Let Q

n be a 
restriction to Fn of a nondegenerate r-finite measure Q on ðX, FÞ:

Assume that the observed random variables X1, X2, ::: are i.i.d., so that under Pi the 
sample Xn ¼ ðX1, :::, XnÞ has joint density piðXnÞ with respect to the dominating meas
ure Qn for all n 2 N, which can be expressed as

piðXnÞ ¼
Yn

t¼1
fiðXtÞ, i ¼ 1, :::, N, (2.1) 

where fiðXtÞ represents the respective density for Xt under the hypothesis Hi: Hence, 
the interest lies in determining which of N given densities f1, :::, fN is true.

A multihypothesis sequential test is a pair d ¼ ðT, dÞ, where T is a stopping time with 
respect to the filtration fFngn2Zþ and d ¼ dðXTÞ is an FT-measurable terminal decision 
function with values in the set f1, :::, Ng: Specifically, d¼ i means that the hypothesis Hi is 
accepted upon stopping, d ¼ if g ¼ T <1, d accepts Hif g: Let aijðdÞ ¼ Piðd ¼ jÞ, i 6¼ j, 
i, j ¼ 1, :::, N, denote the error probabilities of the test d; that is, the probabilities of accept
ing the hypothesis Hj when Hi is true.

Introduce the class of tests with probabilities of errors aijðdÞ that do not exceed the 
prespecified numbers 0 < aij < 1 :

CðaÞ ¼ d : aijðdÞ6 aij for i, j ¼ 1, :::, N, i 6¼ j
� �

, (2.2) 
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where a ¼ ðaijÞ is a matrix of given error probabilities that are positive numbers less 
than 1 (the diagonal entries aii are immaterial).

Let Ei denote the expectation under hypothesis Hi (i.e., under the measure Pi). The 
objective is to discover a sequential test that would minimize the expected sample sizes 
Ei½T� for all hypotheses Hi, i ¼ 1, :::, N, at least approximately.

For n 2 N, define the likelihood ratio (LR) and the log-likelihood ratio (LLR) proc
esses between hypotheses Hi and Hj as

KijðnÞ ¼
dPn

i
dPn

j
ðXnÞ ¼

piðXnÞ

pjðXnÞ
¼
Yn

t¼1

fiðXtÞ

fjðXtÞ
,

kijðnÞ ¼ log KijðnÞ ¼
Xn

t¼1
log

fiðXtÞ

fjðXtÞ

" #

:

In a particular case of two hypotheses H1 and H2 (N¼ 2), Wald (1945, 1947) intro
duced the SPRT. Let Zt ¼ log½f1ðXtÞ=f2ðXtÞ� be the LLR for the observation Xt, so the 
LLR for the sample Xn is the sum

k12ðnÞ ¼ kn ¼
Xn

t¼1
Zt , n ¼ 1, 2, ::: (2.3) 

Letting a0 < 0 and a1 > 0 be thresholds, Wald’s SPRT d�ða0, a1Þ ¼ ðT�, d�Þ is

T�ða0, a1Þ ¼ inf n P 1 : kn 62 ða0, a1Þ
� �

, d�ða0, a1Þ ¼
1 if kT� P a1
2 if kT� 6 a0:

�

(2.4) 

In the case of two hypotheses, the class of tests (2.2) is defined as

Cða0, a1Þ ¼ d : a0ðdÞ6 a0 and a1ðdÞ6 a1
� �

, 

where a0 represents the upper bound on the type I error (false positive) probability 
a0ðdÞ ¼ a12ðdÞ, and a1 represents the upper bound on the type II error (false negative) 
probability a1ðdÞ ¼ a21ðdÞ:

Wald’s SPRT possesses an extraordinary optimality property: it minimizes both the 
expected sample sizes E1½T� and E2½T� within the class of sequential (and nonsequential) 
tests Cða0, a1Þ as long as the observations are i.i.d. under both hypotheses. In other 
words, Ei½T�� ¼ infd2Cða0, a1Þ Ei½T� for i¼ 0, 1, as established by Wald and Wolfowitz 
(1948) through a Bayesian approach.

Lai (1981) proved that the SPRT is also first-order asymptotically optimal as 
max ða0, a1Þ ! 0 for general non-i.i.d. models with dependent and non–identically dis
tributed observations when the normalized log-likelihood ratio n−1kn converges 1- 
quickly to finite numbers Ii under Pi:

The central idea of Lorden’s investigation, elaborated in detail in Section 2.1.2, is 
that, similar to how the SPRT is strictly optimal in the class Cða0, a1Þ for any error 
probabilities a0 and a1, combinations of SPRTs exhibit third-order asymptotic optimal
ity for multihypothesis testing problems involving any finite number of densities when 
probabilities of errors are small.
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2.1.2. Near-Optimality of the Multihypothesis SPRT
The problem of sequentially testing many hypotheses is substantially more complex 
than that of testing two hypotheses. Identifying an optimal test in the class (2.2) that 
minimizes expected sample sizes for all hypotheses H1, :::,HN , is daunting. Hence, a 
significant portion of the development of sequential multihypothesis testing in the 20th 
century has focused on the exploration of certain combinations of one-sided SPRTs. See 
Armitage (1950), Chernoff (1959), Kiefer and Sacks (1963), and Lorden (1967, 1977b).

The results of Lorden’s ingenious paper (Lorden 1977b) are of fundamental impor
tance because they establish third-order asymptotic optimality of the accepting multihy
pothesis test that he proposed. More specifically, Lorden established that just as the 
SPRT is optimal in the class Cða0, a1Þ for testing two hypotheses, certain combinations 
of one-sided SPRTs are nearly optimal in a third-order sense in the class CðaÞ; that is, 
subject to error probability constraints, expected sample sizes are minimized to within 
the negligible additive o(1) term:

inf
d2CðaÞ

Ei T½ � ¼ Ei T�½ � þ oð1Þ as amax ! 0 for all i ¼ 1, :::, N, (2.5) 

where amax ¼ max16 i, j6N, i6¼jaij and T� is the stopping time of the multihypothesis test 
d�, which is defined below.

We now define a test proposed by Lorden, which we will refer to as the accepting 
matrix SPRT (MSPRT). Write N ¼ f1, :::, Ng: For a threshold matrix A ¼ ðAijÞi, j2N , 
with Aij > 0 for i 6¼ j and the Aii are immaterial (0, say), define the MSPRT d� ¼

ðT�, d�Þ, built on one-sided SPRTs between hypotheses Hi and Hj, as follows:

Stop at the first n P 1 such that; for some i, KijðnÞP Aji for all j 6¼ i, (2.6) 

and accept the unique Hi that satisfies these inequalities. Note that for N¼ 2 the 
MSPRT coincides with Wald’s SPRT.

Let aji ¼ log Aji: Introducing the Markov accepting times for hypotheses Hi as

Ti ¼ inf n P 1 : min
j6¼i

16 j 6 N
kijðnÞ − aji
� �

P 0
( )

, i ¼ 1, :::, N, (2.7) 

the test in equation (2.6) can also be written in the following form:

T� ¼ min
16 j6N

Tj, d� ¼ i if T� ¼ Ti: (2.8) 

Thus, in the MSPRT, each component SPRT is extended until, for some i 2 N , all 
N − 1 SPRTs involving Hi accept Hi:

The MSPRT is not strictly optimal for N> 2, but it is a good approximation to the 
optimal multihypothesis test. Under certain conditions and with some choice of the 
threshold matrix A, it minimizes the expected sample sizes Ei½T� for all i ¼ 1, :::, N to 
within a vanishing o(1) term for small error probabilities; see (2.5).

Consider first the first-order asymptotic criterion: Find a multihypothesis test 
d�ðaÞ ¼ ðd�ðaÞ, T�ðaÞÞ such that

lim
amax!0

infd2CðaÞ Ei T½ �
Ei T�ðaÞ½ �

¼ 1 for all i ¼ 1, :::, N: (2.9) 
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Using Wald’s likelihood ratio identity, it is easily shown that aijðd�Þ6 exp ð−aijÞ for 
i, j ¼ 1, :::, N, i 6¼ j, so selecting aji ¼ j log ajij implies d� 2 CðaÞ: These inequalities are 
similar to Wald’s in the binary hypothesis case and are very imprecise. Using Wald’s 
approach, it is rather easy to prove that the MSPRT with boundaries aji ¼ j log ajij is 
first-order asymptotically optimal, minimizing expected sample sizes as long as the 
Kullback-Leibler information numbers Iij ¼ Ei½kijð1Þ� are positive and finite; see 
Tartakovsky, Nikiforov, and Basseville (2015, section 4.3.1).

In his ingenious paper, Lorden (1977b) substantially improved this result, showing 
that with a sophisticated design that includes accurate estimation of thresholds account
ing for overshoots, the MSPRT is nearly optimal in the third-order sense (2.5).

Specifically, assume the second-moment condition

Ei kijð1Þ
� �2

<1, i, j ¼ 1, :::, N (2.10) 

and define the numbers

Lij ¼ exp −
X1

n¼1

1
n

PjðkijðnÞ > 0Þ þ PiðkijðnÞ6 0Þ
� �

( )

, i, j ¼ 1, :::, N: (2.11) 

These numbers are symmetric, Lij ¼ Lji, and 0 < Lij6 1 (Lii � 1). Furthermore, 
Lij ¼ 1 only if the measures Pn

i and Pn
j are singular so that the absolute continuity 

assumption is violated.
For i, j 2 N (i 6¼ j) and a> 0, define one-sided SPRTs

sijðaÞ ¼ inf n P 0 : kijðnÞP a
� �

: (2.12) 

Using a renewal-theoretic argument, the numbers Lij are tightly related to the over
shoots in the one-sided tests. If the LLR kijð1Þ is non-arithmetic under Hi, then

Lij ¼ fijIij, fij ¼ lim
a!1

Ei exp −ðkijðsijðaÞÞ − aÞ
� �� �

(2.13) 

(see, e.g., theorem 3.1.3 in Tartakovsky, Nikiforov, and Basseville 2015).
It turns out that the L-numbers play a significant role both in the Bayes and the fre

quentist frameworks. They facilitate the adjustment of boundaries necessary to achieve 
optimality.

Consider the Bayes multihypothesis problem with the prior distribution of hypotheses 
p ¼ ðp0ð1Þ, :::, p0ðNÞÞ, where p0ðiÞ ¼ PðHiÞ, and the loss incurred when stopping at 
time T¼ n and making the decision d¼ j while the hypothesis Hi is true is LnðHi, d ¼
j, XnÞ ¼ Lij þ cn, where c> 0 is the cost of making one observation or sampling cost 
and where 0 < Lij <1 for i 6¼ j and 0 if i¼ j.

The average (integrated) risk of the test d ¼ ðT, dÞ is

qp
c ðdÞ ¼

XN

i¼1
p0ðiÞ

XN

j¼1
LijPiðd ¼ jÞ þ c Ei T½ �

2

4

3

5:

It follows from theorem 1 of Lorden (1977b) that, as c! 0, the MSPRT d�

defined in equation (2.6) with the thresholds AjiðcÞ ¼ ðp0ðjÞ=p0ðiÞÞLjiLij=c is 
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asymptotically third-order optimal (i.e., to within o(c)) under the second-moment con
dition (2.10):

qp
c ðd
�Þ ¼ inf

d
qp

c ðdÞ þ oðcÞ as c! 0, 

where infimum is taken over all sequential or nonsequential tests.
Using this Bayes asymptotic optimality result, it can be proven that the MSPRT is 

also nearly optimal to within o(1) with respect to the expected sample sizes Ei½T� for all 
hypotheses among all tests with constrained error probabilities. In other words, the 
MSPRT has an asymptotic property similar to the exact optimality of the SPRT for two 
hypotheses. This result is more practical than the above Bayes optimality.

The following theorem provides detailed specifications, resembling theorem 4 and its 
corollary in Lorden (1977b). Recall that aijðdÞ ¼ Piðd ¼ jÞ represents the probability of 
erroneously accepting the hypothesis Hj when Hi is true. In addition, denote as ~aiðdÞ ¼

Piðd 6¼ iÞ the probability of erroneously rejecting Hi when it is true and bjðdÞ ¼
PN

i¼1 wijPiðd ¼ jÞ as the weighted probability of accepting Hj, where ðwijÞi, j2N is a 
given matrix of positive weights. Recall the definition of the class of tests (2.2) for which 
the probabilities of errors Piðd ¼ jÞ do not exceed prescribed values aij and introduce 
two more classes that upper-bound the weighted probabilities of errors bjðdÞ and proba
bilities of errors ~aiðdÞ, respectively:

�CðbÞ ¼ d : bjðdÞ6bj for j ¼ 1, :::, N
� �

, (2.14) 
~Cð~aÞ ¼ d : ~aiðdÞ6 ~ai for i ¼ 1, :::, N

� �
: (2.15) 

If Aij ¼ AijðcÞ is a function of the small parameter c, then the error probabilities 
a�ijðcÞ, ~a�i ðcÞ, and b�j ðcÞ of the MSPRT d�ðcÞ are also functions of this parameter, and if 
AjiðcÞ ! 1, then a�ijðcÞ, b

�
j ðcÞ ! 0 as c! 0: Note that ~a�i ðcÞ ¼

P
j6¼i a

�
ijðcÞ, so it also 

goes to zero as c! 0: We denote as b�ðcÞ the vector ðb�1ðcÞ, :::, b
�
NðcÞÞ, as ~a�ðcÞ the vec

tor ð~a�1ðcÞ, :::, ~a�NðcÞÞ, and as a�ðcÞ the matrix ða�ijðcÞÞi, j2N :

Theorem 2.1 (MSPRT near optimality). Assume that the second moment condition 
(2.10) holds.

i. If the thresholds in the MSPRT are selected as AjiðcÞ ¼ wjiLij=c, i, j ¼ 1, :::, N, then

Ei T�ðcÞ½ � ¼ inf
d2�Cðb�ðcÞÞ

Ei T½ � þ oð1Þ as c! 0 for all i ¼ 1, :::, N, (2.16) 

that is, the MSPRT minimizes to within o(1) the expected sample sizes among all tests 
whose weighted error probabilities are less than or equal to those of d�ðcÞ:

ii. For any matrix B ¼ ðBijÞ (Bij > 0, i 6¼ j), let Aji ¼ Bji=c. The MSPRT d�ðcÞ asymp
totically minimizes the expected sample sizes for all hypotheses to within o(1) as 
c! 0 among all tests whose error probabilities aijðdÞ are less than or equal to 
those of d�ðcÞ as well as whose error probabilities ~aiðdÞ are less than or equal to 
those of d�ðcÞ; that is,
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Ei T�ðcÞ½ � ¼ inf
d2Cða�ðcÞÞ

Ei T½ � þ oð1Þ as c! 0 for all i ¼ 1, :::, N (2.17) 

and

Ei T�ðcÞ½ � ¼ inf
d2~Cð~a�ðcÞÞ

Ei T½ � þ oð1Þ as c! 0 for all i ¼ 1, :::, N: (2.18) 

The intuition behind these results is that because the MSPRT is a combination of 
one-sided SPRTs sijðajiÞ defined in equation (2.12) and because the fij ¼ Lij=Iij are cor
rection factors to the error probability bound PjðsijðajiÞ <1Þ6 e−aji , the asymptotic 
approximation

PjðsijðajiÞ <1Þ ¼ fije−ajið1þ oð1ÞÞ as aji !1, 

works well even for moderate values of aji. So taking aji ¼ log ðIij=LijaÞ allows one to 
attain a nearly optimal solution in the frequentist problem. The proofs of these results 
are extremely tedious and require many nonstandard and sophisticated mathematical 
tools developed by Lorden.

Notice that Theorem 2.1 only addresses the asymptotically symmetric case where

lim
c!0

log b�j ðcÞ
log b�kðcÞ

¼ 1, lim
c!0

log ~a�i ðcÞ
log ~a�kðcÞ

¼ 1 and lim
c!0

log a�ijðcÞ
log a�ksðcÞ

¼ 1: (2.19) 

Introducing for the hypotheses Hi different observation costs ci that may go to 0 at 
different rates—that is, setting Aji ¼ Bji=ci—the results of Theorem 2.1 can be general
ized to the more general asymmetric case where the ratios in equation (2.19) are 
bounded away from zero and infinity. This generalization is important for certain 
applications.

Lorden’s outlined results and methodologies hold significant potential for application 
across various problems and domains. For instance, consider their relevance in the mul
tistream (or multichannel) problem involving two decisions and multiple data streams, 
as explored by Fellouris and Tartakovsky (2017) and discussed in Tartakovsky (2020, 
ch. 1). Sequential hypothesis testing within multiple data streams, such as sensors, pop
ulations, or multichannel systems, carries numerous practical implications and 
applications.

Suppose that observations are sequentially acquired over time in N streams. The 
observations in the ith data stream correspond to a realization of a stochastic process 
XðiÞ ¼ fXnðiÞgn2N, where i 2 N :¼ f1, :::, Ng and N ¼ f1, 2, :::g: Let H0 be the null 
hypothesis according to which all N streams are not affected; that is, there are no 
“signals” in all streams at all. For any given non-empty subset of components, B � N , 
let HB be the hypothesis according to which only the components X(i) with i in B con
tain signals. Denote by P0 and PB the distributions of X under hypotheses H0 and 
HB, respectively. Next, let P be a class of subsets of N that incorporates a priori infor
mation that may be available regarding the subset of affected streams. Denote by jBj
the size of a subset B—that is, the number of signals under HB—and by jPj the size of 
class P; that is, the number of possible alternatives in P: For example, if we know 
upper �K 6N and lower K P 1 bounds on the size of the affected subset or when we 
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know that at most K streams can be affected, then P ¼ PK , �K ¼ fB � N :

K 6 jBj6 �Kg and P ¼ PK ¼ fB � N : 16 jBj6Kg, respectively.
We aim to test H0, the simple null hypothesis indicating no signals in any data 

stream, against the composite alternative H1, according to which the subset of streams 
with signals belongs to P: We denote Pn

0 ¼ P0jFn 
and Pn

B ¼ PBjFn 
as restrictions of 

probability measures P0 and PB to the r-algebra Fn and let p0ðXnÞ and pBðXnÞ denote 
the corresponding probability densities of these measures with respect to some nonde
generate r-finite measure, where Xn ¼ ðX1, :::, XnÞ denotes the concatenation of the first 
n observations from all data streams.

In what follows, we confine ourselves to the i.i.d. scenario where observations 
across streams are independent. Moreover, within specific streams, observations are 
also independent, possessing densities giðxÞ and fiðxÞ if the ith stream is unaffected 
and contains a signal, respectively. Hence, the hypothesis testing problem can be formu
lated as

H0 : pðXnÞ ¼ p0ðXnÞ ¼
YN

i¼1

Yn

t¼1
giðXtðiÞÞ;

H1 ¼
[

B2P

HB : pBðXnÞ ¼
Y

i2B

Yn

t¼1
fiðXtðiÞÞ �

Y

i2NnB

Yn

t¼1
giðXtðiÞÞ:

Because the hypothesis testing problem is binary, the terminal decision d takes two 
values 0 and 1, so d 2 f0, 1g is an FT-measurable random variable such that fd ¼ jg ¼
fT <1,Hj is selectedg, j¼ 0, 1.

A sequential test should be designed in such a way that the type I (false alarm) and 
type II (missed detection) error probabilities are controlled; that is, do not exceed given, 
user-specified levels. Denote by CPða0, a1Þ the class of sequential tests with the probabil
ity of false alarm below a0 2 ð0, 1Þ and the probability of missed detection below a1 2

ð0, 1Þ; that is,

CPða0, a1Þ ¼ d : P0ðd ¼ 1Þ6 a0 and max
B2P

PBðd ¼ 0Þ6 a1
n o

: (2.20) 

In general, it is not possible to design the tests that are third-order (to within o (1)) 
or even second-order (to within a constant term O(1)) asymptotically optimal as amax ¼

maxða0, a1Þ ! 0: Only finding a test T� that minimizes the expected sample sizes E0½T�
and EB½T� for every B 2 P to first order is possible; that is,

E0 T�½ � � inf
d2CPða0, a1Þ

E0 T½ �,

EB T�½ � � inf
d2CPða0, a1Þ

EB T½ � for all B 2 P, 

where E0 and EB are expectations under P0 and PB, respectively.
Hereafter we use the notation xa � ya as a! 0 when lima!0ðxa=yaÞ ¼ 1:
Let P be an arbitrary class of subsets of N : For any B 2 P, let KBðnÞ be the likeli

hood ratio of HB against H0 given the observations from all streams up to time n, and 
let kBðnÞ be the corresponding LLR,
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KBðnÞ ¼
dPn

B

dPn
0
¼
Y

i2B

Yn

t¼1

fiðXtðiÞÞ
giðXtðiÞÞ

,

kBðnÞ ¼ log KBðnÞ ¼
X

i2B

Xn

t¼1
log

fiðXtðiÞÞ
giðXtðiÞÞ

� �

:

The natural popular statistic for testing H0 against H1 at time n is the maximum 
(generalized) likelihood ratio (GLR) statistic K̂ðnÞ ¼ maxB2P KBðnÞ: However, applying 
the conventional GLR statistic leads only to the first-order asymptotically optimal test. 
To obtain second- and third-order optimality, we need to modify the GLR statistic into 
the weighed GLR K̂ðn; pÞ ¼ maxB2P pBKBðnÞ, where p ¼ fpB, B 2 Pg is a probability 
mass function on N fully supported on P; that is, pB > 0 for all B 2 P and 
P

B2P pB ¼ 1: The corresponding weighted generalized log-likelihood ratio statistic 
is k̂ðn; pÞ ¼ maxB2PðkBðnÞ þ log pBÞ:

The generalized sequential likelihood ratio test (GSLRT) d̂ ¼ ðT̂ , d̂Þ is defined as

T̂ ¼ inffn P 1 : k̂ðn; p1ÞP a1 or k̂ðn; p0Þ6 − a0g, d̂ ¼ 1 if k̂ðT̂ ; p1ÞP a1

0 if k̂ðT̂ ; p0Þ6 − a0
,

(

where pj ¼ fpj, B, B 2 Pg, j¼ 0, 1 are not necessarily identical weights and a0, a1 > 0 
are thresholds that should be selected appropriately to guarantee the desired error prob
abilities; that is, so that T̂ belongs to class CPða0, a1Þ for given a0 and a1 with almost 
exact equalities. The LLR in the ith stream is kiðnÞ ¼

Pn
t¼1 log ½fiðXnðiÞÞ=giðXnðiÞÞ�, so 

that kBðnÞ ¼
P

i2B kiðnÞ:
The L-number is

LB ¼ exp −
X1

n¼1

1
n

P0ðkBðnÞ > 0Þ þ PBðkBðnÞ6 0Þ½ �

( )

, (2.21) 

which takes into account the overshoot; compare with Lorden’s L-numbers (2.11).
Denote by d̂�ðpÞ ¼ ðT̂�ðpÞ, d̂�ðpÞÞ the GSLRT with weights

p1, B ¼
pB

LB

P
B2PðpB=LBÞ

and p0, B ¼
pB LB

P
B2PðpB LBÞ

, B 2 P: (2.22) 

The next theorem states that d̂�ðpÞ is third-order asymptotically optimal, minimizing 
the weighted expected sample size Ep½T� to within an o (1) term, where Ep is expect
ation with respect to the probability measure Pp ¼

P
B2P pB PB; that is, the weighted 

expectation Ep½�� ¼
P

B2P pB EB½��:

Theorem 2.2. Assume the second-moment conditions for LLRs Eijkið1Þj2 <1 and 
E0jkið1Þj2 <1, i ¼ 1, :::, N. Let a0 and a1 approach 0 so that j log a0j=j log a1j ! 1. If 
thresholds a0 and a1 are selected so that d̂�ðpÞ belongs to CPða0, a1Þ, 
P0ðd̂�ðpÞ ¼ 1Þ � a0, and P1ðd̂�ðpÞ ¼ 0Þ � a1, then the GSLRT is asymptotically optimal 
to third order in the class CPða0, a1Þ:
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inf
d2CPða0, a1Þ

Ep T½ � ¼ Ep T̂�ðpÞ
� �

þ oð1Þ as amax ! 0:

The central idea of the proof of this result is to consider a purely Bayesian sequential 
testing problem with the 1þ jPj states “H0 : density gi for all i ¼ 1, :::, N” and 
“HB

1 : density fB for B 2 P” and two terminal decisions d¼ 0 (accept H0) and d¼ 1 
(accept H1 ¼ [ B2PHB

1 ). Then we can exploit Lorden’s methods and results to get the 
proof. Without Lorden’s (1977b) paper, this would not be possible. Moreover, the whole 
idea of using L-numbers for corrections is based on Lorden’s fundamental contribution 
to the field.

2.2. Lorden’s (1970) Inequality for the Excess over the Boundary

Partially motivated by seeking improved estimates of the error probabilities and other 
operating characteristics of Wald’s SPRT discussed above, Lorden (1970) considered an 
upper bound for estimating a random walk’s “worst-case” expected overshoot,

sup
a P 0

E Ra½ �, (2.23) 

where a P 0 is the boundary,

Ra ¼ STðaÞ − a is the overshoot; (2.24) 

Sn ¼
Pn

t¼1 Zt is the random walk, TðaÞ ¼ inffn P 1 : Sn > ag is the stopping time, 
and, relaxing slightly our notation from Section 2.1.1, here the Zn are i.i.d. random vari
ables with positive mean m; let Z denote a variate with the same distribution as the Zn. 
Wald’s (1946) equation tells us that, whenever the following quantities are finite, 
mE½TðaÞ� ¼ E½STðaÞ� ¼ aþ E½Ra�, so an upper bound on E½Ra� provides an upper 
bound on the expected stopping time E½TðaÞ� for the random walk Sn to cross the 
boundary a. This is closely related to estimates of the expected stopping time E½T�� of 
the SPRT in equation (2.4), as we shall see below.

Wald (1947) provided the upper bound for equation (2.23) of supa P 0 E½Z − ajZ >

a�, which is exact for the exponential distribution and provides reasonable bounds in 
some other cases but has serious deficiencies in general: it can be difficult to calculate, 
is overly conservative in cases like when the distribution of Z has large “gaps,” and may 
be infinite even when E½ðZþÞ2� <1, a sufficient condition for finiteness of equation 
(2.23). Here and throughout this section, zþ ¼ maxfz, 0g is the positive part of z.

For nonnegative Z, results from renewal theory (see Feller 1966) provide estimates of 
E½Ra� close to E½Z2�=m ¼ E½ðZþÞ2�=m for both a¼ 0 and as a!1: Lorden showed 
that this is indeed an upper bound for equation (2.23) more generally: for arbitrary 
i.i.d. Zn allowed to be discrete or continuous, and taking both positive and negative val
ues, a necessary generalization of the renewal theory results for application to sequential 
testing and change point detection and analysis in which the Zn are log-likelihood sum
mands or other sequential test statistic terms.

Theorem 2.3 (Lorden 1970, theorem 1). If Z, Z1, Z2, :::, are i.i.d. random variables with 
mean E½Z� > 0 and E½ðZþÞ2� <1, then Ra as defined in equation (2.24) satisfies
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sup
a P 0

E Ra½ �6
E ðZþÞ2
� �

E Z½ �
: (2.25) 

Lorden’s proof of this theorem involves a number of characteristically clever techni
ques, of which we highlight a few here. First, he considered the stochastic process 
a 7!Ra, noting that (w.p.1) it is piecewise-linear, each “piece” having slope −1. Next, 
because a 7!Ra and even a 7!E½Ra� can behave erratically and be resistant to estimation 
and bounding, Lorden used the smoothing technique instead of estimating 

Ð b
0 E½Ra�da 

for b P 0, which is more regularly behaved, as Lorden showed. Finally, the smoothed 
expected overshoot 

Ð b
0 E½Ra�da is bounded from above using properties of the process 

Ra and then bounded from below using the following subadditivity property of the inte
grand a 7!E½Ra� established from the subadditivity of a 7!E½TðaÞ� and Wald’s equation: 
For any 06 a6 b,

E Ra½ � þ E Rb−a½ � ¼ E STðaÞ
� �

− aþ E STðb−aÞ
� �

− ðb − aÞ

¼ mE TðaÞ½ � þmE Tðb − aÞ½ � − b ðWald0s equationÞ
P mE TðbÞ½ � − b ðsub-additivity of E TðbÞ½ �Þ

¼ E STðbÞ
� �

− b ðWald0s equationÞ

¼ E Rb½ �:

Returning to the stopping time T� of the SPRT in equation (2.4), now let the Zn be 
the log-likelihood ratio terms as in equation (2.3) and a0 and a1 be the boundaries in 
equation (2.4), and expectation and probability are under the alternative hypothesis 
density f1. The random walk Sn now coincides with the log-likelihood ratio statistic kn 
in equation (2.3), although we continue to use the S notation here for clarity. To relate 
T� to Tða1Þ Lorden observed that

ST� 6minfST� , a1g þ ðSTða1Þ − a1Þ, (2.26) 

and then applying equation (2.25) to the latter term gives the upper bound

E T�½ �6
ð1 − a1Þa1 − a1a0

m
þ

E ðZþÞ2
� �

m2 (2.27) 

on the expected stopping time of the SPRT under the alternative hypothesis, with a 
bound under the null hypothesis obtained analogously. Wald (1947) provided a well- 
known upper bound on the type II error probability a1, but in order to apply equation 
(2.27) what is needed is clearly a lower bound on a1 and a lower bound on a0 for the 
corresponding bound under the null. Both of these can be obtained by another applica
tion of Lorden’s theorem, as follows. Wald’s argument gives that

a0

1 − a1
¼ E exp ð−ST� ÞjST� > a1

� �
:

Using the conditional Jensen’s inequality with a bound like equation (2.26) after multi
plying by the indicator of the event fST� > a1g, Lorden obtained

a0

1 − a1
P exp −E ðST� jST� > a1Þ

� �
P exp − a1 þ

E ðZþÞ2
� �

ð1 − a1Þm

 !" #

:

"
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Using the standard upper bound a16 e−a1 , this gives

a0 P ð1 − e−a1Þ exp − a1 þ
E ðZþÞ2
� �

ð1 − e−a1Þm

 !" #

, 

with an analogous lower bound for a1.
Lorden (1970, section 2) also obtained generalizations of equation (2.25) to cases in 

which the variates Zn are not necessarily i.i.d. They key property is the subadditivity of 
T(a), for which Lorden assumed the sufficient condition

E ðZþn Þ
2
jTðaÞP n

h i

6 r � E ZnjTðaÞP n½ �

for some factor r. Under this condition, Lorden obtained analogous bounds on E½Ra�

and bounds on the moments supa P 0 E½ðRaÞ
p
� for non-i.i.d. observations Zn (Lorden 

1970, theorems 2 and 3), as well as bounds on the tail probability PðRa > xÞ for i.i.d. 
observations (Lorden 1970, theorem 4).

Other than his seminal 1971 paper on change point detection, Lorden (1970) is his 
most highly cited paper. In addition to its uses in sequential testing, change point detec
tion, and renewal theory, it has found applications in reliability theory (Rausand and 
Hoyland 2003), clinical trial design (Whitehead 1997), finance (Novak 2011), and queu
ing theory (Kalashnikov 2013), among other applications. Perhaps reflecting its funda
mental nature and wealth of applications, Lorden’s inequality—as equation (2.25) has 
become known—even has its own Wikipedia entry (https://en.wikipedia.org/wiki/ 
Lorden/%27s_inequality)

2.3. Lorden’s 2-SPRT and the Kiefer-Weiss Minimax Optimality

Suppose that based on a sequence of independent observations fXngn P 1 with common 
parametric density fh one wishes to test the hypothesis H0 : h ¼ h0 versus H1 : h ¼ h1 
(h0 < h1) with error probabilities at most a0 and a1. Even though the SPRT has the 
remarkable optimality property of minimizing the expected sample size for both statis
tical hypotheses Ehi ½T�, i¼ 0, 1, its performance may be poor when the true parameter 
value h ¼ # 2 ðh0, h1Þ differs from putative ones h0 or h1. Its expected sample size 
E#½T� can be even much larger than that of the fixed sample size of the Neyman- 
Pearson test; see, for example, section 5.2 in Tartakovsky, Nikiforov, and Basseville 
(2015). Much work has been directed toward finding sequential tests that reduce the 
expected sample size of the SPRT for parameter values between the hypotheses.

Let Cða0, a1Þ ¼ fd : aiðdÞ6 ai, i ¼ 0, 1g denote the class of tests with error probabil
ities at most a0 and a1 and let

ESSða0, a1Þ ¼ inf
d2Cða0, a1Þ

sup
h

Eh T½ �

denote the expected sample size of an optimal test in the class Cða0, a1Þ in the worst- 
case scenario. The problem of finding a test d0 ¼ ðT0, d0Þ such that suph Eh½T0� ¼

ESSða0, a1Þ subject to the error probability constraints a0 and a1 is known as the 
Kiefer-Weiss problem. No strictly optimal test has been found so far. Kiefer and Weiss 
(1957) presented structured results about tests that minimize the expected sample size 
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Eh½T� at a selected point h ¼ # 2 ðh0, h1Þ, which is referred to as the modified Kiefer- 
Weiss problem. Weiss (1962) proved that the Kiefer-Weiss problem reduces to the 
modified problem in symmetric cases for normal and binomial distributions. Lorden 
(1976) made a valuable contribution to the modified Kiefer-Weiss problem for two not 
necessarily parametric hypotheses Hi : P ¼ Pi, i¼ 0, 1, when the observations X1, X2, :::
are i.i.d. and their true distribution P2 may be different from P0 and P1: Lorden (1976) 
introduced a simple combination of one-sided SPRTs, called the 2-SPRT, and proved 
that it is third-order asymptotically optimal. Later, Lorden (1980) proved theorems that 
characterize the basic structure of optimal sequential tests for the modified Kiefer-Weiss 
problem. His work has generated several works related to both the modified Kiefer- 
Weiss problem and the original Kiefer-Weiss problem of minimizing the maximal 
expected sample size; see, for example, Huffman (1983), Dragalin and Novikov (1987), 
and Tartakovsky, Nikiforov, and Basseville (2015, section 5.3).

Consider the following modified Kiefer-Weiss problem. Let ðX, F, Fn, PÞ, n 2 Zþ, 
be a filtered probability space where the sub-r-algebra Fn ¼ rðXnÞ of F is generated 
by the observations Xn ¼ fXt , 16 t6 ng: The goal is to test the hypotheses Hi : P ¼

Pi, i¼ 0, 1, where P0, P1 are given probability measures that are locally mutually abso
lutely continuous. The true probability measure is either one of Pi or an “intermediate” 
measure P2 that is also locally absolute continuous with respect to Pi: Let Qn be a dom
inating measure. The observations are i.i.d. under P0, P1, P2, so the sample Xn ¼

ðX1, :::, XnÞ has joint densities piðXnÞ ¼
Qn

t¼1 fiðXtÞ for i¼ 0, 1, 2, with respect to Q
n, 

where fiðXtÞ, t P 1, are densities for the tth observation.
For n 2 N and i¼ 0, 1, define the LR and LLR processes

KiðnÞ ¼
dPn

2
dPn

i
ðXnÞ ¼

Yn

t¼1

f2ðXtÞ

fiðXtÞ
, kiðnÞ ¼ log KiðnÞ ¼

Xn

t¼1
log

f2ðXtÞ

fiðXtÞ

� �

, 

with Kið0Þ ¼ 1 and kið0Þ ¼ 0:
Define two parallel one-sided SPRTs:

T0 ¼ inf n P 1 : k1ðnÞP a1
� �

, T1 ¼ inf n P 1 : k0ðnÞP a0
� �

: (2.28) 

The stopping time of Lorden’s 2-SPRT (Lorden 1976) is T? ¼ minðT0, T1Þ and 
the terminal decision is d? ¼ argmini¼0, 1Ti: If ai ¼ log ð1=aiÞ, i¼ 0, 1, then aiðd

?Þ ¼

Piðd? 6¼ iÞ6 ai; that is, this test belongs to class Cða0, a1Þ ¼ fd : a0ðdÞ6 a0, a1ðdÞ6 a1g:

These upper bounds may be rather conservative. For example, in the symmetric case 
P2ðd? ¼ 1Þ ¼ P2ðd? ¼ 0Þ ¼ 1=2, we have aiðd

?Þ6 ai=2:
Let E2 denote expectation under P2, and let Ii ¼ E2½kið1Þ�, i¼ 0, 1, denote Kullback- 

Leibler information numbers. The following theorem, proved by Lorden (1976), estab
lishes third-order asymptotic optimality of Lorden’s 2-SPRT for small probabilities of 
errors ai. Its proof is based on Bayesian arguments. This theorem emerges from the
orem 1 in Lorden (1977b), which was proved a year later.

Theorem 2.4. Let the observations fXngn P 1 be i.i.d. under Pi, i¼ 0, 1, 2. Assume that 
the Kullback-Leibler information numbers I0 and I1 are positive and, in addition, the 
second-moment conditions E2jkið1Þj2 <1, i¼ 0, 1, hold. Let a?0ða0, a1Þ and a?1ða0, a1Þ

denote the error probabilities of the 2-SPRT d?ða0, a1Þ ¼ ðT?ða0, a1Þ, d?ða0, a1ÞÞ. Let 
ESSða0, a1Þ denote infimum of the expected sample size E2½T� over all tests with P0ðd ¼
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1Þ6 a?0ða0, a1Þ and P1ðd ¼ 0Þ6 a?1ða0, a1Þ. Then

ESSða0, a1Þ ¼ E2 T?ða0, a1Þ½ � þ oð1Þ as minða0, a1Þ ! 1, (2.29) 

where oð1Þ ! 0 as minða0, a1Þ ! 1:

This theorem implies that if the thresholds a0 and a1 in the 2-SPRT are selected so 
that the error probabilities a?0ða0, a1Þ ¼ a0 and a?1ða0, a1Þ ¼ a1 are exactly equal to 
the given values a0 and a1, then it is third-order asymptotically optimal as amax ! 0 
in the class Cða0, a1Þ: The requirement of exact error probabilities can also be relaxed 
to the asymptotic equalities a?i ða0, a1Þ ¼ aið1þ oð1ÞÞ, i¼ 0, 1.

The significance of this result cannot be overstated, because Lorden’s simple test is 
nearly optimal. Simultaneously, the optimal test can be computed using Bellman’s back
ward induction algorithm because the optimal sequential test is truncated, meaning that 
it has a bounded maximal sample size, as demonstrated by Kiefer and Weiss (1957). 
For one-parameter exponential families fPh, h 2 hg, the optimal bounds exhibit curva
ture in the ðSn, nÞ plane, where Sn ¼

Pn
t¼1 Xi, and determining them typically entails 

substantial computation. In contrast, Lorden’s 2-SPRT approximates optimal curved 
boundaries with simple linear ones, resulting in a continuation region shaped like a tri
angle, as illustrated in Figure 2.

Lorden (1976) performed an extensive performance analysis for testing the mean h of 
the Gaussian distribution Xn � Nðh, 1Þ with the hypotheses Hi : h ¼ hi, (i¼ 0, 1) in 
the symmetric case where a0 ¼ a1 and P2 � Nðh?, 1Þ, h? ¼ ðh0 þ h1Þ=2: The conclu
sion is that the 2-SPRT performs very closely to the optimal test with its curved boun
daries obtained using backward induction. The efficiency depends on the error 
probabilities, but it was over 99% in all of his performed experiments. Similar results 
were obtained by Huffman (1983) for the exponential example fhðxÞ ¼

Figure 2. The boundaries hh
1ðnÞ and hh

0ðnÞ of the 2-SPRT (solid) and optimal boundaries (dashed) as 
functions of n. Sh

n ¼ Sn − nEh½X1�:
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he−hx, x P 0, h > 0: Here the 2-SPRT has efficiency over 98% and almost always over 
99% for a broad range of error probabilities and parameter values.

The results of Theorem 2.4 can be extended to the multiple hypothesis case with 
Nþ 1 hypotheses, N> 1. Specifically, the modified matrix SPRT is also third-order 
asymptotically optimal as amax ¼ max06 i6Nai ! 0 in the class of tests

CðaÞ ¼ d : aiðdÞ6 ai for i ¼ 0, 1, :::, N
� �

, 

where aiðdÞ ¼ Piðd 6¼ iÞ and a ¼ ða0, a1, :::, aNÞ is a vector of given error probabilities; 
cf. Tartakovsky, Nikiforov, and Basseville (2015, theorem 5.3.3, page 240).

Lorden’s results have sparked further research into the minimax Kiefer-Weiss prob
lem, which aims to establish near-optimal solutions for the least favorable intermediate 
distribution P2 within the single-parameter exponential family. Consider the parametric 
case P2 ¼ Ph, Pi ¼ Phi where the hypotheses are H0 : P0 ¼ Ph0 and H1 : P1 ¼

Ph1 , h0 < h1: Let h be an arbitrary point belonging to the interval ðh0, h1Þ and let 
d?ðhÞ ¼ ðd?ðhÞ, T?ðhÞÞ denote the 2-SPRT tuned to h. In other words, T?ðhÞ ¼

minðTh
0 , Th

1 Þ, where the Th
i ’s are defined by equation (2.28) with the LLRs kh

i ðnÞ ¼
log½dPn

h=dPn
hi
�ðXnÞ, i¼ 0, 1, tuned to h.

Theorem 2.4 implies that the 2-SPRT d?ðhÞ is third-order asymptotically optimal for 
minimizing Eh½T� at the intermediate point h 2 ðh0, h1Þ when the second moments 
Ehjk

h
0ð1Þj

2 and Ehjk
h
0ð1Þj

2 are finite and the thresholds ai are selected so that the error 
probabilities are either exactly equal, or at least close, to the given numbers ai, a chal
lenging task. However, setting ai ¼ j log aij embeds the 2-SPRT into the class Cða0, a1Þ, 
and Theorem 2.4 suggests that if one can find a nearly least favorable point h�—that is, 
h� can be selected so that suph Eh½T?ðh�Þ� � Eh� ½T?ðh�Þ�—then d?ðh�Þ is an approximate 
solution to the Kiefer-Weiss problem of minimizing suph Eh½T�:

For the single-parameter exponential family with density ffhðxÞ, h 2 Hg, where

fhðxÞ
f~hðxÞ

¼ exp ðh − ~hÞx − ðbðhÞ − bð~hÞÞ
n o

, (2.30) 

with bðhÞ being a convex and infinitely differentiable function on ~H � H, it is feasible 
to identify the nearly least favorable point h�ða0, a1, h0, h1Þ such that the 2-SPRT with 
thresholds ai ¼ log ð1=aiÞ achieves second-order asymptotic minimaxity, meaning that 
the residual term in the discrepancy between the expectation of the sample size of the 
optimal test and the 2-SPRT is of order O(1) for small ai. Initially addressed by 
Huffman (1983), who proposed h�ða0, a1, h0, h1Þ leading to a residual term of order 
oðj log aj

1=2
Þ, this problem was further advanced by Dragalin and Novikov (1987), who 

demonstrated the second-order optimality of Huffman’s version of the 2-SPRT.
As previously noted, the formulas ai ¼ j log aij, ensuring the inequalities 

aiðd
?ðhÞÞ6 ai, tend to be overly conservative. A refinement can be achieved by observ

ing that

a1ðd
?ðhÞÞ ¼ PhðT? ¼ Th

0 Þe−a1 Eh e−ða1−kh
1ðTh

0 ÞÞjT? ¼ Th
0

n o

,

a0ðd
?ðhÞÞ ¼ PhðT? ¼ Th

1Þe−a0 Eh e−ða0−kh
0ðTh

1 ÞÞjT? ¼ Th
1

n o
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where, asymptotically as ai !1,

Eh e−ða0−kh
0ðTh

1 ÞÞjT? ¼ Th
1

n o

! fh
0, Eh e−ða1−kh

1ðTh
0 ÞÞjT? ¼ Th

0

n o

! fh
1:

For the non-arithmetic case, fh
i can be computed using the renewal-theoretic argu

ment similar to (2.11) and (2.13):

fh
i ¼

1
Iðh, hiÞ

exp −
X1

n¼1

1
n

Phðk
h
i ðnÞ > 0Þ þ Piðk

h
i ðnÞ6 0Þ

h i
( )

, 

where Iðh, hiÞ ¼ ðh − hiÞ _bðhÞ − ðbðhÞ − bðhiÞÞ are the Kullback-Leibler numbers.
The efficiency of Lorden’s 2-SPRT in stopping to both reject and accept the null was 

appealing in clinical trial designs, where these actions are known as efficacy and futility 
stopping. Lai and Shih (2004) extended the 2-SPRT from the fully sequential setting to 
the group sequential setting while maintaining its efficiency and balancing the trade-off 
between efficacy and futility stopping.

2.4. Near-Uniform Optimality of the GLR SPRT for Composite Hypotheses

For practical purposes, it is considerably more significant to devise tests that minimize 
the expected sample size Eh½T� for all possible parameter values (i.e., uniformly optimal) 
rather than to address the minimax Kiefer-Weiss problem of minimizing Eh½T� at a least 
favorable point. In this section, our primary objective is to explore the design of sequen
tial tests that are at least approximately uniformly optimal for small error probabilities 
or asymptotically Bayesian for a small cost of observations for testing composite 
hypotheses.

Consider a sequence of i.i.d. observations X1, X2, :::, originating from a common 
distribution Ph with density fhðxÞ with respect to some nondegenerate sigma-finite 
measure, where the l-dimensional parameter h ¼ ðh1, :::, hlÞ belongs to a subset H 

of the Euclidean space Rl: The parameter space H is partitioned into three disjoint 
sets H0, H1, and Iin; that is, H ¼ H0 [H2 [ Iin: The objective is to test the two 
composite hypotheses H0 : h 2 H0 against H1 : h 2 H1: The subset Iin of H denotes 
an indifference zone where the loss Lðh, dÞ associated with correct or incorrect deci
sions d is zero; that is, no constraints on the probabilities Phðd ¼ iÞ are imposed if 
h 2 Iin: The introduction of an indifference zone is typically motivated by the recog
nition that in many applications, the correct action is not crucial and often not 
even feasible when the hypotheses are very close. However, in principle, Iin may be 
an empty set.

We aim to find a sequential test d ¼ ðT, dÞ that minimizes the expected sample size 
Eh½T� uniformly for all h 2 H in the class of tests Cða0, a1Þ in which the maximal error 
probabilities suph2Hi

Phðd 6¼ iÞ are upper-bounded by the given values:

Cða0, a1Þ ¼ d : sup
h2H0

Phðd ¼ 1Þ6 a0 and sup
h2H1

Phðd ¼ 0Þ6 a1
� �

: (2.31) 
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Thus, we are interested in the frequentist problem of finding a test dopt such that

inf
d2Cða0, a1Þ

Eh T½ � ¼ Eh Topt½ � uniformly in h 2 H: (2.32) 

Unfortunately, such a uniformly optimal solution does not exist, and one has 
to resort to finding asymptotic approximations for small error probabilities. In the 
frequentist setting, it is possible to find first-order asymptotically optimal tests that 
satisfy

lim
amax!0

infd2Cða0, a1Þ Eh T½ �
Eh T½ �

¼ 1 for all h 2 H: (2.33) 

In addition to the frequentist problems (2.32) and (2.33), it is of interest to consider 
a Bayesian approach putting an a priori distribution WðhÞ on H with a cost c per 
observation and a loss function LðhÞ at the point h associated with accepting the incor
rect hypothesis and find asymptotically optimal tests when the cost c is small. The 
Bayes average (integrated) risk of a sequential test d ¼ ðT, dÞ is

qW
c ðdÞ ¼

ð

h6 h0

LðhÞPhðd ¼ 1ÞWðdhÞ þ

ð

hP h1

LðhÞPhðd ¼ 0ÞWðdhÞ þ c
ð

H

Eh T½ �WðdhÞ:

It turns out that in the Bayesian context, it is possible to find tests that are not only 
asymptotically (as c! 0) first-order optimal, infd qW

c ðdÞ ¼ qW
c ðdÞð1þ oð1ÞÞ, but also 

second-order optimal—that is, infd qW
c ðdÞ ¼ qW

c ðdÞ þ OðcÞ—and even third-order opti
mal; that is, infd qW

c ðdÞ ¼ qW
c ðdÞ þ oðcÞ:

In the case of the one-parameter exponential family (2.30), using optimal stopping 
theory, it can be shown that the optimal Bayesian test dopt ¼ ðTopt, doptÞ is

Topt ¼ inf n P 1 : ðSn, nÞ 2 Bc
� �

, dopt ¼ j if ðSn, nÞ 2 Bj
c, j ¼ 0, 1, 

where Sn ¼ X1 þ � � � þ Xn, and Bc ¼ B0
c [B1

c is a set that can be found numerically.
Schwarz (1962) derived the test d?ðĥÞ with ĥ ¼ fĥng being the maximum likelihood 

estimator (MLE) of h as an asymptotic solution as c! 0 to the Bayesian problem with 
the 0 − 1 loss function. Specifically, the a posteriori risk of stopping is

Rst
n ðSnÞ ¼ min

i¼0, 1

Ð
Hi

exp hSn − nbðhÞ
� �

WðdhÞ
Ð

H
exp hSn − nbðhÞ

� �
WðdhÞ

( )

, (2.34) 

where H0 ¼ fh6 h0g, H1 ¼ fhP h1g: Schwarz showed that Bc=j log cj ! B0 as c! 0 
and proposed a simple procedure: continue sampling until Rst

n ðSnÞ is less than c and 
upon stopping accept the hypothesis for which the minimum is attained in equation 
(2.34). Denote this procedure by ~dðcÞ ¼ ð~TðcÞ, ~dðcÞÞ: Applying Laplace’s asymptotic 
integration method to evaluate the integrals in equation (2.34) leads to the likelihood 
ratio test where the true parameter is replaced by the MLE ĥn: This approximation pre
scribes stopping sampling at the time T̂ðĥÞ ¼ minðT̂ 0ðĥÞ, T̂ 1ðĥÞÞ, where

T̂ iðĥÞ ¼ inf n : suph2H hSn − nbðhÞ½ � − hiSn − nbðhiÞ½ �P j log cj
� �

: (2.35) 
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The terminal decision rule d̂ðĥÞ of the test d̂ðĥÞ ¼ ðT̂ðĥÞ, d̂ðĥÞÞ accepts H0 if ĥT̂ <

h�, where h� is such that Iðh�, h0Þ ¼ Iðh�, h1Þ: Note also that

T̂ ¼ inf n P 1 : nmax Iðĥn, h0Þ, Iðĥn, h1Þ

h i

P j log cj
n o

: (2.36) 

The tests that use the MLEs of unknown parameters are usually referred to as the 
GSLRT.

Wong (1968) showed that the GSLRT d̂ is first-order asymptotically Bayes as c! 0 :

qW
c ðd̂Þ � inf

d
qW

c ðdÞ � cj log cj
ð

H

WðdhÞ

ImaxðhÞ
, Eh T̂½ � �

j log cj
ImaxðhÞ

for every h 2 H, 

where ImaxðhÞ ¼ max Iðh, h0Þ, Iðh, h1Þ
� �

:

Kiefer and Sacks (1963) showed that the procedure ~dðcÞ ¼ ð~TðcÞ, ~dðcÞÞ with the 
stopping time ~TðcÞ ¼ inf n P 1 : Rst

n ðSnÞ6 c
� �

, proposed by Schwarz (1962), is also 
first-order asymptotically Bayes. In other words, for any prior distribution W, 
qW

c ð
~dðcÞÞ behaves asymptotically like infd qW

c ðdÞ as c! 0: Lorden (1967) refined 
this result by introducing the stopping region as the first n such that Rst

n ðSnÞ6Qc, 
where Q is a positive constant, and demonstrated that it can be made second-order 
asymptotically optimal; that is, infd qW

c ðdÞ ¼ qW
c ð

~dðQcÞÞ þ OðcÞ as c! 0, and 
infd qW

c ðdÞ ¼ Oðcj log cjÞ: It is noteworthy that the problem addressed by Lorden 
(1967) is more general than what we are discussing here because it encompasses 
general i.i.d. models, not limited to exponential families, and multiple-decision cases. 
Additionally, see Lorden (1972) for multiple hypotheses in one-parameter exponen
tial families.

A significant advancement in Bayesian theory for testing separated hypotheses 
about the parameter of the one-parameter exponential family given by the equation 
(2.30) was made by Lorden (1977a; an unpublished manuscript). In this work, 
Lorden demonstrated that the family of GSLRTs can be devised to ensure third- 
order asymptotic optimality. This implies that they achieve the Bayes risk to within 
o(c) as c! 0:

Lorden provided sufficient conditions for families of tests to be third-order asymptot
ically Bayes and presented examples of such procedures based not only on the GLR 
approach but also on mixtures of likelihood ratios. Furthermore, the error probabilities 
of the GSLRTs were evaluated asymptotically as a consequence of a general theorem on 
boundary-crossing probabilities.

Due to the significance of this work, let us delve into a more detailed overview of 
Lorden’s theory. It is worth noting that the paper by Lorden (1977a) extends the results 
obtained by Lorden (1977b) for multiple discrete cases, which we discussed in 
Subsection 2.1.2, to the continuous parameter case.

The hypotheses to be tested are H0 : h6 h6 h0 and H1 : �h P hP h1, where h and �h 

are interior points of the natural parameter space H. Let ĥn 2 ½h, �h� be the MLE that 
maximizes the likelihood over h in ½h, �h�: Lorden’s GSLRT stops at T̂ , which is the min
imum of the Markov times T̂ 0, T̂ 1 defined as
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T̂ 0ðĥÞ ¼ inf n P 1 :
Xn

k¼1
log

f
ĥn
ðXkÞ

fh0ðXkÞ
h0ðĥnÞ

" #

P a and ĥn P h�

8
<

:

9
=

;
,

T̂ 1ðĥÞ ¼ inf n P 1 :
Xn

k¼1
log

f
ĥn
ðXkÞ

fh1ðXkÞ
h1ðĥnÞ

" #

P a and ĥn6 h�

8
<

:

9
=

;
,

(2.37) 

where a is a threshold, h� satisfies Iðh�, h0Þ ¼ Iðh�, h1Þ, and h0, h1 are positive continu
ous functions on ½h�, �h�, ½h, h��, respectively. The hypothesis Hi is rejected when T̂ ¼
T̂ i: To summarize, Lorden’s family of GSPRTs is defined as

T̂ðĥÞ ¼ min T̂ 0ðĥÞ, T̂ 1ðĥÞ

n o

, d̂ ¼ 0 if T̂ðĥÞ ¼ T̂ 1ðĥÞ

1 if T̂ðĥÞ ¼ T̂ 0ðĥÞ
,

(

(2.38) 

with the T̂ iðĥÞ’s in equation (2.37).
Denote by

knðh, hiÞ ¼
Xn

k¼1
log

fhðXkÞ

fhiðXkÞ

� �

¼ ðh − hiÞSn − bðhÞ − bðhiÞ½ �n 

the LLR between points h and hi.
Lorden assumed that the prior distribution WðhÞ has a continuous density wðhÞ posi

tive on ½h, �h� and that the loss LðhÞ equals zero in the indifference zone ðh0, h1Þ and is 
continuous and positive elsewhere and bounded away from 0 on ½h, h0� [ ½h1, �h�: The 
main results in Lorden (1977a, theorem 1) can be briefly outlined as follows:

i. Under these assumptions, the family of GSLRTs defined by equations (2.37) and 
(2.38) with a ¼ j log cj − 1

2 log j log cj is second-order asymptotically optimal; that 
is,

qw
c ðd̂Þ ¼ inf

d
qw

c ðdÞ þ OðcÞ as c! 0, 

where qw
c ðdÞ is the average risk of the test d ¼ ðT, dÞ :

qw
c ðdÞ ¼

ð

h

h0 LðhÞPhðd ¼ 1ÞwðhÞdhþ

ð�h

h1

LðhÞPhðd ¼ 0ÞwðhÞdhþ c
ð

h

�hEh T½ �wðhÞdh:

ii. This result can be improved from O(c) to o(c); that is, to the third order,

qw
c ðd̂Þ ¼ inf

d
qw

c ðdÞ þ oðcÞ as c! 0, 

making the right choice of the functions h0 and h1 by setting

hiðhÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p

I3ðh, hiÞ€bðhÞ

s
wðhÞj _bðhÞ − _bðhiÞj

wðhiÞLðhiÞfðh, hiÞ
, i ¼ 0, 1, 
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where fðh, hiÞ ¼ Lðh, hiÞ=Iðh, hiÞ is a correction for the overshoot over the boundary, 
the factor that is the subject of renewal theory. Specifically,

fðh, hiÞ ¼ lim
a!1

Eh exp − ksaðh, hiÞ − a
� �� �

, sa ¼ inf n : knðh, hiÞP a
� �

, (2.39) 

where in the non-arithmetic case fðh, hiÞ can be computed as

fðh, hiÞ ¼
1

Iðh, hiÞ
exp −

X1

n¼1

1
n

Phðknðh, hiÞ6 0Þ þ Phiðknðh, hiÞ > 0Þ
� �

( )

: (2.40) 

Because the Bayes average risk infd qw
c ðdÞ is of order cj log cj, this implies that the 

asymptotic relative efficiency Ec ¼ ½q
w
c ðd̂Þ − infd qw

c ðdÞ�=q
w
c ðd̂Þ of Lorden’s test is of 

order 1 − oð1=j log cjÞ as c! 0:
Note the crucial difference between Schwarz’s GSLRT (equation 2.35) and Lorden’s 

GSLRT (equation 2.38). In the Schwarz test, hi � 1 and the threshold is set as a ¼
j log cj: However, in the Lorden test, two innovations emerge. Firstly, the threshold is 
reduced by 1

2 log j log cj and, secondly, adaptive weights hiðĥnÞ are incorporated into the 
GLR statistic. Because the stopping times T̂ i can be written as

T̂ 0ðĥÞ ¼ inf n P 1 : knðĥn, h0ÞP a − log h0ðĥnÞ and ĥn P h�
n o

,

T̂ 1ðĥÞ ¼ inf n P 1 : knðĥn, h1ÞP a − log h1ðĥnÞ and ĥn6 h�
n o

,
(2.41) 

Lorden’s GSLRT can alternatively be perceived as the GSLRT with curved adaptive 
boundaries

aiðĥnÞ ¼ j log cj −
1
2

log j log cj − log hiðĥnÞ, i ¼ 0, 1, 

which depend on the behavior of the MLE ĥn: These two innovations render this modi
fication of the GLR test nearly optimal.

Given the complexity of Lorden’s formal mathematical proof, we offer a heuristic 
sketch that captures the main ideas of the approach. The Bayesian perspective naturally 
guides us toward the mixture LR statistics

�K
i
n ¼

Ð �h

h
ehSn−nbðhÞwðhÞdh

Ð
Hi

LðhÞehSn−nbðhÞwðhÞdh
, i ¼ 0, 1, 

where H0 ¼ ½h, h0�, H1 ¼ ½h1, �h�, and LðhÞ ¼ 1 for the simple 0 − 1 loss function. 
Indeed, the a posteriori stopping risk is given by

Rst
n ðSnÞ ¼ min

i¼0, 1

Ð

Hi
LðhÞehSn−nbðhÞwðhÞdh
Ð �h

h
ehSn−nbðhÞwðhÞdh

8
<

:

9
=

;
: (2.42) 

A candidate for the approximate optimum is the procedure that stops as soon as 
Rst

n ðSnÞ6Ac for some Ac � c: This is equivalent to stopping as soon as maxi¼0, 1 �K
i
n 

P 1=Ac: The GLR statistics are approximated as

400 J. BARTROFF AND A. G. TARTAKOVSKY



K̂
i
n ¼

max
h2 h , �h½ � ehSn−nbðhÞ

maxh2Hi ehSn−nbðhÞ �
max

h2 h , �h½ � ehSn−nbðhÞ

ehiSn−nbðhiÞ
, i ¼ 0, 1, 

and the stopping posterior risk (equation 2.42) is approximated as

Rst
n ðSnÞ � min

i¼0, 1

wðhiÞLðhiÞ €bðĥnÞ=2pn
h i1=2

wðĥnÞj _bðhiÞ − _bðĥnÞj
e−knðĥn, hiÞ, (2.43) 

where i¼ 0 if ĥn6 h� and i¼ 1 otherwise. These approximations stem from Laplace’s 
method for asymptotic integral expansions and its variations.

Subsequently, Lorden demonstrated the existence of Q> 1 such that if the stopping 
risk exceeds Qc, then the continuation risk becomes smaller than the stopping risk. 
Therefore, it is approximately optimal to stop at the first instance such that Rst

n falls 
below Qc: This finding, coupled with the approximation given by equation (2.43), 
results in Topt � minðs0, s1Þ, where

si ¼ inf n : e−knðĥn, hiÞ=~hiðĥnÞn1=26Qc
n o

¼ inf n : knðĥn, hiÞP − log n1=2~hiðĥnÞQc
h in o

with ~hiðĥnÞ given by

~hiðĥnÞ ¼

ffiffiffiffiffiffiffiffiffiffiffi
2p

€bðĥnÞ

s
wðhÞj _bðĥnÞ − _bðhiÞj

wðhiÞLðhiÞ
:

For small c, the expectation Eh½si� is of order j log cj, so n1=2 can be replaced by 
j log cj1=2, which yields

si � T̂ i ¼ inf n : knðĥn, hiÞP − log cj log cj1=2Q~hiðĥnÞ

h in o

:

Note that these stopping times look exactly like the ones defined in equation (2.41)
with the stopping boundaries

aiðĥnÞ ¼ j log cj −
1
2

log j log cj − log Q~hiðĥnÞ

h i

, i ¼ 0, 1:

The test based on these stopping times is already optimal to the second order. 
However, to achieve third-order optimality, one must carefully choose the constant Q to 
address the overshoots. Specifically, leveraging this result, Lorden demonstrated that the 
risks of an optimal rule and of the GSLRT are both linked to the risks of the family of 
one-sided tests saðhÞ ¼ inffn : knðh, hiÞP ag, which are strictly optimal in the problem

qðh, vÞ ¼ inf
T

EhT þ vPhiðT <1Þ
� �

¼ inf
T

Eh T þ v
YT

n¼1

phiðXnÞ

phðXnÞ

( )

:

If we set a ¼ log½vLðh, hiÞ�, then by taking Q ¼ 1=Lðh, hiÞ the resulting test will be 
nearly optimal to within o(c). Because h is unknown, we need to replace it with the esti
mate ĥn to obtain
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aiðĥnÞ ¼ j log cj −
1
2

log j log cj − log ~hiðĥnÞ=Lðĥn, hiÞ

h i

¼ j log cj −
1
2

log j log cj − log hiðĥnÞ

h i

:

It is intriguing to compare Lorden’s approach with the Kiefer-Sacks test that stops 
the first time Rst

n becomes smaller than c. Lorden’s approach allows us to show that the 
test with the stopping time

T̂ ¼ inf n : Rst
n ðSnÞ6 c=LðĥnÞ

n o

, 

where LðĥnÞ ¼ Lðĥn, h1Þ if ĥn < h� and LðĥnÞ ¼ Lðĥn, h0Þ otherwise, is nearly optimal 
to within o(c). It is worth recalling that the factor fðh, hiÞ ¼ Iðh, hiÞ

−1
Lðh, hiÞ provides a 

necessary correction for the excess over the thresholds at stopping; see equation (2.39). 
This offers a significant enhancement over the Kiefer-Sacks test, which disregards the 
overshoots. Notably, this improvement is not limited to testing close hypotheses when 
Lðh, hiÞ � 1: Even in cases where the parameter values are well separated, this correc
tion could be crucial. For instance, in the binomial case with the success probabilities 
h1 ¼ 0:6 and h0 ¼ 0:4, we have Lðh1, h0Þ � 1=15, so Lorden’s test will terminate much 
earlier.

Certainly, it is important to note that implementing Lorden’s fully optimized GSLRT 
may encounter difficulties. This is primarily because computing the numbers fðh, hiÞ

analytically is often not feasible, except for specific models such as the exponential. For 
instance, when testing the mean in the Gaussian case, these numbers can only be com
puted numerically. Though Siegmund’s (1985) corrected Brownian motion approxima
tions can be utilized, they are sufficiently accurate only when the difference between h 

and hi is relatively small. Hence, for practical purposes, only partially optimized solu
tions, which provide O(c)-optimality, are typically feasible. A workaround involves dis
cretizing the parameter space.

Let â0ðhÞ ¼ Phðd̂ ¼ 1Þ, h 2 H0 ¼ ½h, h0� and â1ðhÞ ¼ Phðd̂ ¼ 0Þ, h 2 H1 ¼ ½h1, �h�
denote the error probabilities of the GSLRT d̂a: Note that due to the monotonicity of 
âiðhÞ, suph2Hi

âiðhÞ ¼ âiðhiÞ: In addition to the Bayesian third-order optimality prop
erty, Lorden established asymptotic approximations to the error probabilities of the 
GSLRT. Specifically, by theorem 2 of Lorden (1977a),

âiðhiÞ ¼
ffiffiffi
a
p

e−aCiðhiÞð1þ oð1ÞÞ, i ¼ 0, 1 as a!1, (2.44) 

where

C0ðh0Þ ¼

ð�h

h�
fðh, h0Þh0ðhÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
€bðhÞ

2pIðh, h0Þ

s

dh,    

C1ðh1Þ ¼

ð

h

h�

fðh, h1Þh1ðhÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
€bðhÞ

2pIðh, h1Þ

s

dh 

and where fðh, hiÞ, i¼ 0, 1, are defined in equations (2.39) and (2.40). These approxi
mations hold significance for frequentist problems, which are typically of primary inter
est in most applications. Though there are no strict upper bounds on the error 
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probabilities, leading to no specific prescription on how to embed the GSLRT into class 
Cða0, a1Þ, the asymptotic approximations (equation 2.44) enable us to select thresholds 
ai in the stopping times T̂ i so that âiðhiÞ � ai, i¼ 0, 1, at least for sufficiently small ai. 
Note that in this latter case, the threshold a in equation (2.41) should be replaced with 
ai, the roots of the transcendental equations

ai −
1
2

log ai ¼ log CiðhiÞ=ai½ �, i ¼ 0, 1:

With this choice, the GSLRT is asymptotically uniformly first-order optimal with 
respect to the expected sample size; that is,

inf
d2Cða0, a1Þ

Eh T½ � ¼ Eh T̂½ �ð1þ oð1ÞÞ as amax ! 0 for all h 2 h, �h
� �

, 

where the o(1) term is of order Oð log j log amaxj=j log amaxjÞ: It is noteworthy that this 
result holds true not only in the asymptotically symmetric case where log a0 � log a1 

and a0 � a1 as amax ! 0 but also in the asymmetric case where a0 and a1 diverge with 
different rates, as long as a1e−a0 ! 0:

Note that the Schwarz-Lorden asymptotic theory operates under the assumption of a 
fixed indifference zone that does not permit local alternatives, meaning that h1 cannot 
approach h0 as c! 0: In simpler terms, this theory is confined to scenarios where the 
width of the indifference zone h1 − h0 is considerably larger than c1=2:

We conclude this section by mentioning Lorden’s (1973) paper on the properties of 
the one-sided (open-ended) GSLRTs for the one-parameter exponential family. These 
tests reject a null hypothesis h ¼ h0 in favor of h > h0 within the class of stopping times 
satisfying Ph0ðT <1Þ6 a for a prescribed 0 < a < 1=3:

2.5. Optimal Multistage Testing

What is the fewest number of stages for which a multistage hypothesis test can be 
asymptotically equivalent to an optimal fully sequential test? Lorden (1983) took up this 
question and reached the definitive answer of needing three stages in general, except in 
a special symmetric situation in which two stages are possible, described in the next sec
tion. Here, “needing three stages” means allowing the possibility of three stages, 
although Lorden’s optimal procedures can (and do, with probability approaching 1) ter
minate earlier; see Section 2.5.3. Lorden (1983) showed this first in the simple vs. simple 
testing setup and then for testing separated composite hypotheses in an exponential 
family. In this area again, Lorden’s work was groundbreaking and formed the founda
tion for later, more general theoretical investigations in optimal multistage testing (e.g., 
Bartroff 2006a, 2006b, 2007; Xing and Fellouris 2023) and in applications to clinical trial 
designs where the problem is sometimes known as “sample size adjustment” or “re- 
estimation” (e.g., Bartroff and Lai 2008a, 2008b; Bartroff, Lai, and Shih 2013). In this lit
erature especially, multistage procedures are often referred to as group sequential. 
Throughout this section, i.i.d. observations are assumed.
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2.5.1. Simple vs. Simple Testing: Multistage Competitors of the SPRT
Beginning with the simple vs. simple testing setup of Section 2.1.1 and adopting the 
notation there, some of Lorden’s main ideas can be seen by first considering the sym
metric case where the error probabilities a0, a1 ! 0 in such a way that

log a−1
1

I0
�

log a−1
0

I1
: (2.45) 

Letting kn be the LLR statistic in equation (2.3) and t !1 an argument parameter
izing a0, a1 ! 0, Lorden (1983) began by arguing that there is a sample size n ¼
nðtÞP t such that n ¼ t þ oðtÞ,

P0ð−kn < tI0Þ ! 0, and P1ðkn < tI1Þ ! 0: (2.46) 

More explicitly, this is achievable by taking n ¼ t þ dt with
ffiffi
t
p
� dt � t (2.47) 

because, assuming finite second moments Ei½k
2
1� <1, Chebyshev’s inequality gives

P1ðkn < tI1Þ6
var1ðk1Þ=n
I2

1ð1 − t=nÞ2 

which, ignoring constants, under equation (2.47) is

1=n
ð1 − t=nÞ2

¼
n
d2

t
¼

t þ dt

d2
t
¼ oð1Þ as t !1:

A similar argument shows that the other probability in equation (2.46) approaches 0 as 
well.

In this symmetric situation, an optimal two-stage competitor to the SPRT can be 
described in terms of n(t), which is the size of the first stage with t taken to be the 
larger of the two sides of equation (2.45). Note that, for either i¼ 0 or 1, we have tIi �

log a−1
1−i so that t is asymptotically the same as the expected stopping time of the SPRT 

(under either hypothesis) and the first stage n(t) is of the same order but slightly larger. 
The procedure stops after the first stage if

knðtÞ 62 ð log a1, log a−1
0 Þ, (2.48) 

making the appropriate terminal decision. Using equation (2.46), the probability under 
the null of terminating and making the correct terminal decision after this first stage is

P0ðknðtÞ6 log a1Þ ¼ P0ð−knðtÞP log a−1
1 ÞP P0ð−knðtÞP tI0Þ ! 1, (2.49) 

with a similar argument showing that

P1ðknðtÞP log a−1
0 Þ ! 1: (2.50) 

Otherwise, the test continues to a total sample size n2, which is that of the fixed-sam
ple-size test with error probabilities a0, a1 and uses that terminal decision rule. This can 
be accomplished in at most n26Ct 6 CnðtÞ total observations for some constant C. 
Thus, under the null, the total expected sample size is at most

nðtÞ þ CnðtÞP0ðknðtÞ > log a1Þ ¼ nðtÞ 1þ oð1Þ½ � � t �
log a−1

1
I0

, 
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and is of the same order I−1
1 log a−1

0 under the alternative by a similar argument. By def
inition of the two stages, the procedure has type I error probability at most 2a0 and 
type II error probability at most 2a1, so repeating the construction with ai=2 replacing 
ai (i¼ 0, 1) controls the error probabilities at the nominal levels and does not affect the 
asymptotic estimates above. Thus, this two-stage procedure is asymptotically as efficient 
as the SPRT in this symmetric case.

If the asymptotic equivalence equation (2.45) does not hold but we assume that

log a−1
0

log a−1
1

is bounded away from 0 and 1, (2.51) 

Lorden showed that no two-stage test can be asymptotically optimal, itself a nontri
vial result that we discuss in the next section. For this case Lorden gives a three-stage 
procedure that is a slight modification of the one above. Letting t1 and t2 be the left- 
and right-hand sides of equation (2.45), respectively, the first stage of the procedure is 
of size minfnðt1Þ, nðt2Þg, and the second stage (if needed) brings the total sample size 
to maxfnðt1Þ, nðt2Þg, both using the stopping rule equation (2.48) and corresponding 
decision rule. If not stopped by the second stage, a third stage brings the total 
sample size to that of the fixed sample size with error probabilities ai, which is 
6Cmaxfnðt1Þ, nðt2Þg as above, and uses that terminal decision rule. Because 
nðtiþ1Þ � tiþ1 � log a−1

1−i=Ii for both i¼ 0, 1, and equations (2.49) and (2.50) hold for 
nðt1Þ and nðt2Þ, respectively, the expected sample size of this three-stage procedure is 
asymptotically equal to the corresponding side of equation (2.45) and is thus minimized 
under both the null and alternative.

2.5.2. The Necessity of Three Stages
Continuing with the simple vs. simple testing setup of the previous section, Lorden’s 
(1983, corollary 1) result mentioned above that, in the absence of symmetry equation 
(2.45), three stages are necessary for asymptotic optimality is far from obvious because 
it may seem that the first two stages of the three-stage procedure defined above would 
suffice. That is, why is it that a first stage of minfnðt1Þ, nðt2Þg and (if needed) a second 
stage giving total sample size maxfnðt1Þ, nðt2Þg would not be optimal? One clue may be 
that, if that were true, then the same reasoning would seem to imply that a single-stage 
test could be optimal under symmetry equation (2.45), which is known to not hold. 
More generally, Lorden provided the following general result about asymptotically opti
mal k-stage (k P 2) tests: that their expected sample size after k − 1 stages must be 
asymptotically the same as after k stages. In other words, the final stage of an asymptot
ically optimal multistage test is asymptotically negligible in size but necessary. In what 
follows, let I(f, g) denote the information number for arbitrary densities f, g.

Theorem 2.5 (Lorden 1983, theorem 3). For testing f0 vs. f1 in the setup of Section 2.1.1, 
let N denote the sample size of a k-stage (k P 2) test with error probabilities a0 and a1, 
and let M be the total sample size of this test after k–1 stages. If N is asymptotically opti
mal as a0, a1 ! 0 and g is a density distinct from f0 such that

log a−1
1

log a−1
0

P Q >
Iðg, f1Þ

Iðg, f0Þ
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for some Q> 0 as a0, a1 ! 0, then

M !
log a−1

0
Iðg, f0Þ

in g-probability, and Eg M½ � �
log a−1

0
Iðg, f0Þ

� Eg N½ � as a0 ! 0:

Lorden’s proof of this theorem is technical and requires detailed upper bounds on 
the conditional error probabilities after the ðk − 1Þst stage; that is, the probabilities of 
test error given the first M observations. Roughly speaking, showing that these error 
probabilities are small shows that their corresponding sample size M must be large, so 
large in fact that it is asymptotically equivalent to its maximum value N.

Lorden (1983, corollary 1) then used Theorem 2.5 to show that there is an asymptot
ically optimal two-stage test if and only if the symmetry condition equation (2.45) holds, 
with the construction of the two-stage test above providing the “if” argument. For the 
converse, applying Theorem 2.5 with g ¼ f1 shows that the first stage of an optimal 
two-stage test must be asymptotic to ð log a−1

0 Þ=I1: After reversing the roles of f0 and f1 

in the theorem and applying it again with g ¼ f0, it also shows that the first stage must 
be asymptotic to ð log a−1

1 Þ=I0, establishing symmetry equation (2.45).

2.5.3. Composite Hypotheses
For testing separated hypotheses h6 h0 vs. h P h1 > h0 about the one-dimensional par
ameter h of an exponential family, Lorden (1983, section 3) constructed an asymptotic
ally optimal three-stage test utilizing a description of the optimal stopping boundary 
related to Schwarz’s (1962) study of Bayes asymptotic shapes for fully sequential tests, 
described in Section 2.4. Let nðhÞ denote the expected sample size to Schwarz’s bound
ary under h. Lorden’s test utilizes the “worst-case” competing parameter value h� 2

ðh0, h1Þ that maximizes the expected sample size nðh�Þ ¼ maxhnðhÞ � n?: The first stage 
size of Lorden’s procedure is a fixed fraction of n?: If the procedure does not stop after 
the first stage, utilizing Schwarz’s boundary, the second stage brings the total sample 
size to minfn?, ð1þ eÞnðĥÞg, where ĥ is the MLE of h from the first-stage data and 
e& 0 is a chosen sequence. Finally, if needed, the third stage brings the total sample 
size up to n?: Under equation (2.51), Lorden (1983, theorem 1) proved that this test 
asymptotically minimizes the expected sample size to first order, not just for h in the 
hypotheses but uniformly in h over any interval in the parameter space containing 
½h0, h1�: The first order term is of order log a−1

i , as above, and the second order term is 
of order Oððð log a−1

i Þ log log a−1
i Þ

1=2
Þ, i¼ 0, 1.

These results were extended to asymptotically optimal three-stage tests of multidi
mensional parameters in Bartroff (2006a) and Bartroff and Lai (2008a), and more gen
eral multidimensional composite hypotheses in Bartroff and Lai (2008b). On the other 
hand, Lorden’s procedures were generalized to optimal k-stage tests, for arbitrary k P 3, 
in Bartroff (2006b, 2007).

Regarding the necessity of three stages in this composite hypothesis setting, Lorden 
(1983, corollary 2) proved that, under equation (2.51), three stages are necessary (and 
sufficient, by his own procedure) for asymptotic optimality at more than three values of 
h, and so certainly for asymptotic optimality over an interval of h values, as in Lorden’s 
result. An interesting detail that shows this result to be best possible is that an optimal 
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two-stage test can be constructed at three values of h if the special symmetry condition 
Iðh0, h0ÞIðh0, h1Þ ¼ Iðh0, h1ÞIðh1, h0Þ holds for some h0 6¼ h0, h1: Then a two-stage proced
ure similar to the one described in Section 2.5.1 that uses second-stage total sample size 
of log a−1

0 =Iðh0, h0Þ will be optimal at the three values h ¼ h0, h0, and h1.

3. SEQUENTIAL CHANGE POINT DETECTION: LORDEN’S MINIMAX CHANGE 
DETECTION THEORY

In numerous practical applications, the observed process undergoes an abrupt change in 
statistical properties at an unknown point in time. Examples encompass aerospace navi
gation and flight systems integrity monitoring, cybersecurity, identification of terrorist 
activity, industrial monitoring, air pollution monitoring, radar, sonar, and electro-optics 
surveillance systems. Consequently, this problem has garnered interest from many prac
titioners for some time.

In classical quickest change point detection, the objective is to detect changes in the 
distribution as swiftly as possible, thereby minimizing the expected delay to detection 
assuming that the change is in effect.

More specifically, the change point problem posits that one obtains a series of obser
vations X1, X2, :::, such that, for some value �, � 2 Zþ ¼ f0, 1, 2, :::g (the change point), 
X1, X2, :::, X� have one distribution and X�þ1, X�þ2, :::, have another distribution. The 
change point � is unknown, and the sequence fXngn P 1 is being monitored for detect
ing a change. A sequential detection procedure is a stopping time T with respect to the 
Xs, so that after observing X1, X2, :::, XT it is declared that a change is in effect. That is, 
T is an integer-valued random variable, such that the event fT ¼ ng belongs to the 
sigma-algebra Fn ¼ rðX1, :::, XnÞ generated by observations X1, :::, Xn:

Historically, the field of change point detection began to take shape in the 1920s to 
1930s, spurred by considerations in quality control. Shewhart’s charts were particularly 
influential during this period (Shewhart 1931). However, optimal and nearly optimal 
sequential detection procedures did not come into prominence until much later, in the 
1950s to 1970s, following the advent of sequential analysis (Wald 1947). The concepts 
initiated by Shewhart and Wald laid the foundation for extensive research into sequen
tial change point detection.

The desire to detect the change quickly often leads to being “trigger-happy,” which, 
on one hand, results in an unacceptably high false alarm rate; that is, terminating the 
process prematurely before a real change has occurred. On the other hand, attempting 
to avoid false alarms too strenuously causes a long delay between the true change 
point and its detection. Thus, the essence of the problem lies in achieving a trade-off 
between two conflicting performance measures: the loss associated with the delay in 
detecting a true change and that associated with raising a false alarm. An efficient 
detection procedure is expected to minimize the average loss associated with the 
detection delay, while subject to a constraint on the loss associated with false alarms, 
or vice versa.

Let p�ðXnÞ ¼ pðX1, :::, Xnj�Þ denote the joint probability density of the sample Xn ¼

ðX1, :::, XnÞ when the change point � is fixed (06 � <1) and p1ðXnÞ the joint density 
when � ¼ 1; that is, when there is never a change. Let P� , P1 and E� , E1 denote the 
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corresponding probability measures and expectations. Assume that the observations 
fXngn P 1 are independent and such that X1, :::, X� are each distributed according to a 
common (prechange) density f0ðxÞ, while X�þ1, X�þ2, :::, each follow a common (post
change) density f1ðxÞ: Hence, the model can be represented as

p�ðXnÞ ¼

Y�

t¼1
f0ðXtÞ �

Yn

t¼�þ1
f1ðXÞ for n P � þ 1

p1ðXnÞ ¼
Yn

t¼1
f0ðXtÞ for 16 n6 �

:

8
>>>><

>>>>:

(3.1) 

Note that we assume that X� is the last prechange observation, which is different 
from many publications (including Lorden’s) where it is assumed that X� is the first 
postchange observation. The diagram below illustrates this case:

X1, :::, X�|fflfflfflfflffl{zfflfflfflfflffl}
i:i:d:, f0

, X�þ1, X�þ2, :::
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

i:i:d:, f1

:

Denote by H1 : � ¼ 1 the hypothesis that the change never occurs and by H� the 
hypothesis that the change occurs at time 06 � <1: Let Zt ¼ log½f1ðXtÞ=f0ðXtÞ� denote 
the LLR for the tth observation Xt.

We now introduce the cumulative sum (CUSUM) detection procedure, which was 
first proposed by Page (1954). The change point detection problem can be viewed as a 
problem of testing two hypotheses: H� that the change occurs at a fixed point 06 � <
1 against the alternative H1 : � ¼ 1 that the change never occurs. The LLR between 
these hypotheses is k�n ¼

Pn
t¼�þ1 Zt for � < n and 0 for �P n: Because hypothesis H�

is composite, we may employ the GLR approach, maximizing the LLR k�n over �, to 
obtain the log-GLR statistic:

Wn ¼ max
�P 0

Xn

t¼�þ1
Zt, (3.2) 

which follows the recursion

Wn ¼ Wn−1 þ Znð Þ
þ, n P 1, W0 ¼ 0: (3.3) 

This statistic is called the CUSUM statistic. Page’s CUSUM procedure is the first 
time n P 1 such that the CUSUM statistic Wn exceeds a positive threshold a:

Ta ¼ inffn P 1 : Wn P ag: (3.4) 

Page (1954) proposed measuring the risk due to a false alarm by the mean time to 
false alarm E1½T� and the risk associated with a true change detection by the mean 
time to detection E0½T� when the change occurs at the very beginning. These are com
monly known as the average run length (ARL). Page also analyzed the CUSUM proced
ure defined by equations (3.2) to (3.4) using these operating characteristics.

Though the false alarm rate is reasonable to measure by the ARL to false alarm 
ARLFAðTÞ ¼ E1½T�, the risk due to a true change detection is better measured by the 
conditional expected delay to detection E�½T − �jT > �� for any possible change point 
� 2 Zþ, rather than by the ARL to detection E0½T�: Ideally, a good detection procedure 
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should guarantee small values of the expected detection delay for all change points � 2
Zþ when ARLFAðTÞ is set at a certain level. However, if the false alarm risk is meas
ured in terms of the ARL to false alarm—that is, it is required that ARLFAðTÞP c for 
some c P 1—then a procedure that minimizes the conditional expected delay to detec
tion E�½T − �jT > �� uniformly over all � does not exist. For this reason, we must 
resort to different optimality criteria, such as Bayesian and minimax criteria.

The minimax approach posits that the change point is an unknown not necessarily 
random number. Even if it is random, its distribution is unknown.

Lorden (1971) was the first to address the minimax change detection problem and 
developed the first minimax theory. He proposed to measure the false alarm risk by the 
ARL to false alarm ARLFAðTÞ ¼ E1½T�; that is, to consider the class of change detec
tion procedures CðcÞ ¼ T : ARLFAðTÞP c

� �
for some c P 1 and the risk associated 

with detection delay by the worst-case expected detection delay

ESEDDðTÞ ¼ sup
06 �<1

fess sup E� ðT − �Þ
þ
jX1, :::, X�

� �
g: (3.5) 

In other words, the conditional expected detection delay is maximized over all pos
sible trajectories ðX1, :::, X�Þ up to the change point and then over the change point �.

Lorden’s minimax criterion is

inf
T

sup
�P 0

ess supxE� T-�jT > �, F�½ � subject to ARLFAðTÞP c, 

that is, Lorden’s minimax optimization problem seeks to

Find Topt 2 CðcÞ such that ESEDDðToptÞ ¼ inf
T2CðcÞ

ESEDDðTÞ for every cP 1: (3.6) 

Lorden (1971) demonstrated that Page’s CUSUM procedure achieves first-order 
asymptotic minimax optimality as c approaches infinity. This groundbreaking finding 
marked the initial optimality result in the minimax change detection problem. Given 
the significance of this outcome and the widespread adoption of Lorden’s minimax cri
terion not only within statistical circles but also across various practical domains, we 
proceed to provide further elaboration.

To establish the asymptotic optimality of Page’s CUSUM procedure, Lorden 
employed an intriguing method that permits the utilization of one-sided hypothesis tests 
to assess a collection of change detection procedures, among them Page’s method. Let 
s ¼ sðaÞ be a stopping time with respect to X1, X2, :::, such that

P1ðs <1Þ6 a, (3.7) 

where a 2 ð0, 1Þ: For k ¼ 0, 1, 2, :::, define the stopping time sk obtained by applying s 
to the sequence Xkþ1, Xkþ2, :::, and let s� ¼ mink P 0ðsk þ kÞ:

The subsequent theorem, resembling theorem 2 in Lorden (1971), empowers the con
struction of nearly optimal change detection procedures and facilitates the demonstra
tion of the near-optimality of the CUSUM procedure. It is important to recall that P1
denotes the distribution characterized by the density f0ðxÞ, and P0 corresponds to the 
distribution with density f1ðxÞ:

Theorem 3.1. The random variable s� is a stopping time with respect to X1, X2, :::, and if 
condition (3.7) is satisfied, then the following two inequalities hold:
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E1 s�½ �P 1=a (3.8) 

and
E0 s�½ �6E0 s½ �: (3.9) 

The cumulative LLR for the sample ðXkþ1, :::, XnÞ is kk
n ¼

Pn
t¼kþ1 Zt: Let sðaÞ ¼

inf n P 1 : k0
n P j log aj

� �
denote the stopping time of the one-sided SPRT for testing f0 

versus f1 with threshold j log aj: Then P1ðsðaÞ <1Þ6 a, so condition (3.7) holds. If 
the Kullback-Leibler information number I ¼ E0½Z1� is positive and finite, then it is 
well known that

E0 sðaÞ½ � ¼
j log aj

I
ð1þ oð1ÞÞ as a! 0:

Next, note that the CUSUM statistic defined in equation (3.2) is the maximum of kk
n 

over k P 0, so the stopping time of the CUSUM procedure defined in equation (3.3)
can obviously be written as Ta ¼ mink P 0fskðaÞ þ kg � s� for a ¼ aa ¼ j log aj, where

skðaÞ ¼ inf n P 1 : kk
kþn P j log aj

n o

:

It follows from Theorem 3.1 that setting a ¼ c−1 gives E1½Tac
�P c, so Tac

2 CðcÞ, 
and

ESEDDðTac
Þ � E0 Tac

� �
¼

log c

I
ð1þ oð1ÞÞ as c!1:

To complete the proof of the first-order asymptotic optimality of the CUSUM pro
cedure with threshold a ¼ ac ¼ log c, it suffices to establish that this is the best one 
can do; that is, to prove the asymptotic lower bound

inf
T2CðcÞ

ESEDDðTÞP
log c

I
ð1þ oð1ÞÞ as c!1, (3.10) 

which also yields

inf
T2CðcÞ

ESEDDðTÞ �
log c

I
� ESEDDðTac

Þ as c!1:

Theorem 3 of Lorden (1971) establishes this fact using a rather sophisticated argu
ment. Note, however, that Lai (1998) established the lower bound given by equation 
(3.10) in a general non-i.i.d. case, assuming that n−1k��þn converges to a positive and 
finite number I as n!1 under a certain additional condition. In the i.i.d. case, by the 
Strong Law of Large Numbers (SLLN) n−1k��þn converges to the Kullback-Leibler infor
mation number I almost surely under P�: This implies that as M !1 for all e > 0,

sup
�P 0

P�

1
M

max
06 n6M

k��þn P ð1þ eÞI
� �

¼ P0
1
M

max
06 n6M

k0
n P ð1þ eÞI

� �

! 0: (3.11) 

Using equation (3.11), the lower bound equation (3.10) can be obtained from the
orem 1 in Lai (1998).

To handle a composite parametric postchange hypothesis, which is typical in many 
applications, let fhðxÞ be the postchange density, where h 2 H: Denote ZnðhÞ ¼
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log½fhðXnÞ=f0ðXnÞ�: Then, inequality (3.9) in Theorem 3.1 holds for expectation Eh½s
��:

Additionally, assuming that the Kullback-Leibler information number IðhÞ ¼ Eh½Z1ðhÞ� is 
positive and finite, the asymptotic lower bound given by equation (3.10) holds with IðhÞ;
that is,

inf
T2CðcÞ

ESEDDhðTÞP
log c

IðhÞ
ð1þ oð1ÞÞ as c!1, (3.12) 

where ESEDDhðTÞ ¼ sup06 �<1 ess sup E�, h½ðT-�ÞþjF�� and E�, h is the expectation 
under P�, h when the change occurs at � with the postchange density fh:

Lorden (1971) addressed the composite hypothesis for the exponential family given 
by equation (2.30) with f0 ¼ fh¼0; that is,

fhðXnÞ

f0ðXnÞ
¼ exp hXn − bðhÞ

� �
, h 2 H, n ¼ 1, 2, :::, 

where bðhÞ is a convex and infinitely differentiable function on the natural parameter 
space H, bð0Þ ¼ 0: Let ~H ¼ H − 0:

To find asymptotically optimal procedures by applying Theorem 3.1 along with 
inequality (3.12), we need to determine stopping times, sðcÞ 2 CðcÞ, such that

P0ðsðcÞ <1Þ6 1=c for c > 0 (3.13) 

and

Eh sðcÞ½ � ¼
log c

IðhÞ
ð1þ oð1ÞÞ as c!1 for all h 2 ~H, (3.14) 

where IðhÞ ¼ h _bðhÞ − bðhÞ:
The LLR for the sample ðXkþ1, :::, XnÞ is

kk
nðhÞ ¼: log

Yn

t¼kþ1

fhðXtÞ

f0ðXtÞ

" #

¼ hSk
n − ðn − kÞbðhÞ, 

where Sk
n ¼ Xkþ1 þ � � � þ Xn: Define the GLR one-sided test

sðhÞ ¼ inf n P 1 : sup
hP jh1j

hS0
n − nbðhÞ

� �
> hðcÞ

� �
, 

where h1 may be either a fixed value if the alternative hypothesis is h6 − h1 or h P h1 
or h1ðcÞ ! 0 as c!1 if the hypothesis is h 6¼ 0: Lorden demonstrated that

P0ðsðhÞ <1Þ6 exp −hðcÞ
� �

1þ
hðcÞ

minðIðh1Þ, Ið−h1Þ

� �

, (3.15) 

so hðcÞ can be selected so that hðcÞ � log c as c!1: Hence, equations (3.13) and 
(3.14) hold. Applying sðhÞ to Xkþ1, Xkþ2, :::, we obtain the stopping time skðhÞ, so that 
s�ðhÞ ¼ mink P 0ðsk þ kÞ is the stopping time of the GLR CUSUM procedure,

s�ðhÞ ¼ inf n P 1 : max
06 �6 n

sup
hP jh1j

hS�n − ðn − �ÞbðhÞ
� �

> hðcÞ
� �

:

Thus, the GLR CUSUM procedure is asymptotically first-order minimax.
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The inequality (3.15) is usually overly pessimistic. A much better result gives the 
approximation P0ðsðhÞ <1Þ �

ffiffiffiffiffiffiffiffiffi
hðcÞ

p
exp −hðcÞ

� �
C, which follows from equation 

(2.44). However, the latter one does not guarantee the inequality P0ðsðhÞ <1Þ6 c−1, 
and therefore the inequality E1½s�ðhÞ�P c:

Later, Lorden and Pollak (2005, 2008) proposed adaptive Shiryaev-Roberts and 
CUSUM procedures that utilize one-step delayed estimators of unknown postchange 
parameters h. In these procedures, an estimate ĥn−1ðX1, :::, Xn−1Þ is used after observ
ing the sample of size n, similar to the Robbins-Siegmund one-sided adaptive SPRT; 
see Robbins and Siegmund (1972, 1974). They compared the performance of these 
adaptive procedures with that of the mixture-based Shiryaev-Roberts procedure. 
Notably, these adaptive procedures are computationally simpler than the GLR 
CUSUM procedure.

We conclude with some remarks on later, related developments.

4. REMARKS

1. Fifteen years later, Moustakides (1986) advanced Lorden’s asymptotic theory by 
demonstrating, using optimal stopping theory, that the CUSUM procedure is 
strictly optimal for any ARL to false alarm c P 1 if the threshold a ¼ aðcÞ is 
chosen such that ARLFAðTaÞ ¼ c:

2. Shiryaev (1996) showed that the CUSUM procedure is strictly optimal in the 
continuous-time scenario for detecting the change in the mean of the Wiener 
process according to Lorden’s minimax criterion.

3. Pollak (1985) introduced a distinct minimax criterion aimed at minimizing the 
supremum expected detection delay sup�P 0 E½T − �jT > ��: Additionally, Pollak 
proposed a modification of the conventional Shiryaev-Roberts (SR) procedure 
known as the SRP procedure, which initiates from a randomly distributed point 
following the quasi-stationary distribution of the SR statistic. He proved that this 
procedure is third-order asymptotically minimax, minimizing sup�P 0 E½T − 
�jT > �� to within o (1) as c!1 within the class CðcÞ:

4. Tartakovsky, Pollak, and Polunchenko (2012) proved that the specially designed 
SR-r procedure that starts from a fixed point r ¼ rðcÞ is third-order asymptotic
ally optimal with respect to Pollak’s measure sup�P 0 E½T − �jT > �� within the 
class CðcÞ as c!1:

5. Polunchenko and Tartakovsky (2010) demonstrated that the specially designed 
SR-r procedure, which commences from a predetermined point r ¼ rðcÞ, is 
strictly optimal with respect to Pollak’s measure sup�P 0 E½T − �jT > �� within 
the class CðcÞ for a specific model.

6. Pollak and Tartakovsky (2009) proved strict optimality of the repeated SR pro
cedure that starts from zero in the problem of detecting distant changes.

7. Moustakides, Polunchenko, and Tartakovsky (2009) conducted a thorough com
parison of CUSUM and SR procedures, demonstrating that CUSUM outperforms 
SR in terms of the conditional expected detection delay E�½T − �jT > �� for rela
tively small values of the change point �. However, SR proves to be more effect
ive than CUSUM for relatively large �.
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