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SUMMARY

Adaptive designs have been proposed for clinical trials in which the nuisance parameters or alternative of
interest are unknown or likely to be misspecified before the trial. Although most previous works on adaptive
designs and mid-course sample size re-estimation have focused on two-stage or group-sequential designs
in the normal case, we consider here a new approach that involves at most three stages and is developed
in the general framework of multiparameter exponential families. This approach not only maintains the
prescribed type I error probability but also provides a simple but asymptotically efficient sequential test
whose finite-sample performance, measured in terms of the expected sample size and power functions,
is shown to be comparable to the optimal sequential design, determined by dynamic programming, in
the simplified normal mean case with known variance and prespecified alternative, and superior to the
existing two-stage designs and also to adaptive group-sequential designs when the alternative or nuisance
parameters are unknown or misspecified. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In standard clinical trial designs, the sample size is determined by the power at a given alterna-
tive (e.g. treatment effect). In practice, especially for new treatments about which there is little
information on the magnitude and sampling variability of the treatment effect, it is often difficult
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for investigators to specify a realistic alternative at which sample size determination can be based.
Therefore, the problem of sample size re-estimation based on an observed treatment difference at
some time before the prescheduled end of the trial has attracted considerable attention during the
past decade, see, e.g. Jennison and Turnbull [1, Section 14.2], Shih [2], and Whitehead et al. [3].
Moreover, there are concerns from the regulatory perspective regarding possible inflation of the
type I error probability when such sample size adjustments are used in pharmaceutical trials.
For normally distributed outcome variables, Proschan and Hunsberger [4], Fisher [5], Posch and
Bauer [6], and Shen and Fisher [7] have proposed ways to adjust the test statistics after mid-course
sample size modification so that the type I error probability is maintained at the prescribed level.
Jennison and Turnbull [8] gave a general form of these methods and showed that they performed
considerably worse than group-sequential tests. Tsiatis and Mehta [9] independently came to the
same conclusion, pointing out their inefficiency because the adjusted test statistics are not sufficient
statistics. It is possible to adhere to efficient generalized likelihood ratio statistics in a mid-course
adaptive design if one uses the non-normal sampling distribution (due to the mid-course adaptation)
of the test statistic, instead of ignoring the non-normality and thereby resulting in type I error
inflation. A way to do this was proposed by Li et al. [10], but it was shown by Turnbull [11] to
be relatively inefficient compared with group-sequential tests. Jennison and Turnbull [12] recently
introduced adaptive group-sequential tests that choose the j th group size and stopping boundary
on the basis of the cumulative sample size n j−1 and the sample sum Sn j−1 over the first j−1
groups and that are optimal in the sense of minimizing a weighted average of the expected sample
sizes over a collection of parameter values subject to prescribed error probabilities at the null and a
given alternative hypothesis. They also showed how the corresponding optimization problem can be
solved numerically by using the backward induction algorithms for ‘optimal sequentially planned’
designs developed by Schmitz [13]. Jennison and Turnbull [14] found that standard (non-adaptive)
group-sequential tests with the first stage chosen optimally are nearly as efficient as their optimal
adaptive counterparts that are considerably more complicated, and we use these as a benchmark
for our comparisons in Section 3.

With the goal of achieving similar efficiency in more complicated situations where the alternative
of interest and/or nuisance parameters are not known, we give in Section 2 a simple adaptive test
that updates the sample size after the initial stage by using estimates of the unknown parameters and
adjustments for the uncertainty of these estimates. This is done first for the one-parameter case in
Section 2.1 and extended to the multiparameter setting in Section 2.3. These tests usually terminate
at the first or second stage, but allow the possibility of a third stage to account for uncertainties in
the second-stage sample size estimate. The tests control the type I error probability and have power
close to the uniformly most powerful fixed sample test. Section 3 gives a comprehensive simulation
study, which is the first of its kind, of the adaptive tests in the aforementioned references and
compares them with the adaptive tests developed in Section 2 and with fixed sample size (FSS) and
standard group-sequential tests having the same minimum and maximum sample sizes. A thorough
evaluation of the performance of these tests is presented, involving the power, mean number of
stages, and the mean, 25th, 50th, and 75th percentiles of the sample size distribution under a
wide range of alternatives, subject to the prescribed constraints on type I error probability and
first-stage and maximum sample sizes. Section 3.1 also compares the proposed adaptive test with
the benchmark optimal adaptive test of Jennison and Turnbull [12, 14], and the variance unknown
case is considered in Section 3.2. An example from the National Heart, Lung and Blood Institute
(NHLBI) Coronary Intervention Study is given in Section 3.3. Section 4 gives some concluding
remarks.
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2. EFFICIENT ADAPTIVE TESTS WITH THREE OR FEWER STAGES

In this section, we consider one-sided tests of the null hypothesis H0 :���0 on the natural
parameter � in a one-parameter exponential family f�(x)=e�x−�(�) of densities with respect
to some measure on the real line. Let X1, X2, . . . denote the successive observations, and let
Sn = X1+·· ·+Xn . A sufficient statistic based on (X1, . . . , Xn) is X̄n = Sn/n, and the maximum
likelihood estimate of � is �̂n =(�′)−1(X̄n). The special case of normal Xi with mean � and known
variance 1 is widely used in the literature on sample size re-estimation as a prototype, which
can be used to approximate more complicated situations via the central limit theorem, as in the
references in Section 1.

In practice, there is an upper bound M on the allowable sample size for a clinical trial because
of funding and duration constraints and because there are other trials that compete for patients,
investigators, and resources. The re-estimated sample size in two-stage designs has to be restricted
within this bound; see, e.g. Li et al. [10, p. 283]. Lai and Shih [15, p. 511] have pointed out that M
implies constraints on the alternatives that can be considered in power calculations to determine the
sample size. Specifically, by the Neyman–Pearson lemma, the FSS test that rejects H0 if SM�c�,M
has maximal power at any alternative �>�0 and, in particular, at the alternative �1 at which the
FSS test has prescribed power 1− �̃. Here, c�,n denotes the critical value of the level-� FSS test
based on a sample of size n, i.e. pr�0{Sn�c�,n}=�. Typical sample size re-estimation procedures
in the literature (see, e.g. the references in Section 1) first use the initial sample of size m, which
is some fraction of M , to provide an estimate �̂m of � and then evaluate the sample size of the FSS
test that has conditional power 1− �̃ given the alternative �̂m , assuming that �̂m>�0. This results in
a two-stage procedure, which does not incorporate the sampling variability of the estimate �̂m . A
simple way to make ‘uncertainty adjustments’ in the above procedure that attempts to ‘self-tune’
itself to the actual � value is to allow the possibility of not stopping at the second stage when H0
is not rejected, by including a third (and final) stage with total sample size M .

2.1. An efficient test of H0 with at most three stages

To test H0 :���0 at significance level �, suppose that no fewer than m but no more than M
observations are to be taken. Let �1 be the alternative ‘implied’ by M , in the sense that M can
be determined as the sample size of the level-� Neyman–Pearson test with power 1− �̃ at �1.
Alternatively, �1 can be specified separately from M as a clinically relevant or realistic anticipated
effect size based on prior experimental, observational, or theoretical evidence, if such information
is available. A fundamental result in sequential testing theory is that Wald’s sequential probability
ratio test (SPRT) of the simple hypotheses �=�′ vs �=�′′ has the smallest expected sample size
at �=�′ and �′′ among all tests with the same or smaller type I and II error probabilities; see
Reference [16]. Moreover, letting � and �̃ denote the type I and II error probabilities and T (�′,�′′)
be the sample size of the SPRT, Chernoff [16, p. 66] has derived the approximations:

E�′′(T (�′,�′′))≈|log�|/I (�′′,�′), E�′(T (�′,�′′))≈|log �̃|/I (�′,�′′) (1)

where

I (�,�)=E�[log{ f�(Xi )/ f�(Xi )}]=(�−�)�′(�)−{�(�)−�(�)}
is the Kullback–Leibler information number. To test the one-sided hypothesis H0 :���0, suppose
that we use the maximum likelihood estimator �̂m from the first stage of the study in place of the
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alternative �′′ in (1) with �′ =�0, in the event �̂m>�0. Then the first relation in (1) suggests that an
efficient second-stage sample size would be around |log�|/I (̂�m,�0). On the other hand, if �̂m��0,
then we can consider the possibility of stopping due to futility by choosing �′ = �̂m and �′′ =�1
in the SPRT; hence, the second relation in (1) suggests |log �̃|/I (̂�m,�1) as an efficient second-
stage sample size. Adjusting for the sampling variability in �̂m by inflating by the factor 1+�m ,
we therefore define the second-stage sample size:

n2=m∨{M∧�(1+�m)n(̂�m)�} (2)

where �m>0, ∨ and ∧ denote maximum and minimum, respectively, �x� denotes the smallest
integer �x (and �x	 denotes the largest integer �x), and

n(�)= |log�|
I (�,�0)

∧ |log �̃|
I (�,�1)

(3)

which is an approximation to Hoeffding’s [17] lower bound for the expected sample size E�(T )

of a test that has type I error probability � at �0 and type II error probability �̃ at �1. Note that (2)
includes the cases n2=m and n2=M associated with using just one or two stages. Moreover, the
stopping rule defined below by (4)–(6) allows the possibility of stopping after the first or second
stage. Therefore, the actual number of stages used by the ‘three-stage’ test is in fact a random
variable taking the values 1, 2, 3.

The three-stage test uses rejection and futility boundaries similar to those of the efficient group-
sequential tests introduced by Lai and Shih [15]. Letting ni denote the total sample size at the i th
stage, the test stops at stage i�2 and rejects H0 if

ni<M, �̂ni>�0 and ni I (̂�ni ,�0)�b (4)

where n1=m and n2 is given by (2). The test stops at stage i�2 and accepts H0 if

ni<M, �̂ni<�1 and ni I (̂�ni ,�1)�b̃ (5)

It rejects H0 at stage i=2 or 3 if

ni =M, �̂M>�0 and MI (̂�M ,�0)�c (6)

accepting H0 otherwise. Letting 0<�,̃�<1, define the thresholds b, b̃, and c by the following
equations:

pr�1{(5) occurs for i=1 or 2} = �̃ �̃ (7)

pr�0{(5) does not occur for i�2, and (4) occurs for i=1 or 2} = �� (8)

pr�0{(4) and (5) do not occur for i�2, and (6) occurs} = (1−�)� (9)

Note that (8) and (9) imply that the type I error probability is exactly �, and we have found in our
simulations (see Section 3) that the power at �1 is generally close to, but slightly less than, 1− �̃.
The values �,̃� are the fractions of type I and II error probabilities ‘spent’ at the first two stages,
and in theory any values 0<�,̃�<1 may be used. In practice, we recommend using 0.2��,̃��0.8,
and we have found that the power and expected sample size of the above adaptive test vary very
little with changes in �,̃�. In particular, the three examples in Section 3 use �= �̃= 1

3 , (�,̃�)=( 12 ,
3
4 ),

and �= �̃= 1
2 . The factor �m in (2) is a small inflation of n(̂�m) to adjust for the uncertainty in �̂m .
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Lorden [18] gives an asymptotic upper bound for �m as a function of �0, �1, �, and �̃. We advocate
simply fixing �m to a small maximum inflation that the practitioner is comfortable with and have
found that �m =0.05 or 0.1 works well in practice, which we use in the examples in Section 3.
As with M , the choice of m is often determined by practical considerations such as funding and
duration. To aid such considerations or in the absence of them, if the practitioner has bounds �<�0
and �>�1 in mind (e.g. � might be the largest realistic treatment effect likely to be seen), then
m could be chosen to be n(�)∧n(�), an approximation to Hoeffding’s [17] lower bound for the
smallest expected sample size of a test with error probabilities �, �̃ at �0,�1 when �=� or �.

The probabilities in (7)–(9) can be computed by Monte Carlo or recursive numerical integration,
using normal approximations to signed-root likelihood ratio statistics. Further details are given in
Section 2.2. The original idea to use (2) as the second-stage sample size and to allow the possibility
of a third stage to account for uncertainty in the estimate �̂m (and hence n2) is due to Lorden [18],
although his test uses very conservative upper bounds on the error probabilities. Here, we have
modified Lorden’s test to control the type I error � exactly and provided algorithms to implement
the modified test. It can be shown that our three-stage test is asymptotically optimal: If N is the
sample size of our three-stage test above, then

E�(N )∼m∨
{
M∧ |log�|

I (�,�0)∨ I (�,�1)

}
(10)

as �+ �̃→0, log�∼ log �̃, �m →0 and �m
√
m/logm→∞; if T is the sample size of any test of

H0 :���0 whose error probabilities at �0 and �1 do not exceed � and �̃, respectively, then

E�(T )�(1+o(1))E�(N ) (11)

simultaneously for all �. The proof uses Hoeffding’s [17] lower bound for E�(T ) as in [18] and
can be found in [19].

Since log�∼ log(��) as �→0 for any fixed 0<�<1, the asymptotic formula for E�(N ) in (10)
is unchanged if one replaces the type I error probability � by a fraction of it, and this is why
Lorden [18] can use crude bounds of the type above for the type I error probability. For values of
the type I error probability � (e.g. 0.05 or 0.01) commonly used in practice, replacing � by �/10,
say, can substantially increase E�(N ). Note that our adaptive test keeps the error probability at �0
to be � (instead of less than �) by using Monte Carlo or recursive numerical integration to evaluate
it, discussed in the next section.

2.2. The normal case and recursive numerical integration

The thresholds b, b̃, and c can be computed by solving in succession (7), (8), and (9). Univariate grid
search or Brent’s method [20] can be used to solve each equation. Suppose Xi are N(�,1). Without
loss of generality, we shall assume that �0=0. Since I (�,�)=(�−�)2/2, we can rewrite (7) as

pr�1{Sm−m�1�−(2b̃m)1/2}+pr�1{Sm−m�1>−(2b̃m)1/2, Sn2−n2�1�−(2b̃n2)
1/2}= �̃ �̃ (12)

and (8) and (9) as

pr0{Sm/
√
2m�b1/2}+pr0{̃b1/2<Sm/

√
2m<b1/2, Sn2/

√
2n2�b1/2} = �� (13)

pr0{̃b1/2<Sm/
√
2m<b1/2, b̃1/2<Sn2/

√
2n2<b1/2, SM/

√
M�c1/2} = (1−�)� (14)

Copyright q 2008 John Wiley & Sons, Ltd. Statist. Med. 2008; 27:1593–1611
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The probabilities involving n2 can be computed by conditioning on the value of Sm/m, which
completely determines the value of n2, denoted by k(x). For example, the probabilities under �=0
can be computed via

pr0{Sn2�(2bn2)
1/2|Sm =mx} = �

(
mx−[2bk(x)]1/2

[k(x)−m]1/2
)

(15)

pr0{Sn2 ∈dy, SM ∈dz|Sm =mx} = �k(x)−m(y−mx)�M−k(x)(z− y)dy dz (16)

where � is the standard normal cumulative distribution function and �v is the N(0,v) density
function, i.e. �v(w)=(2�v)−1/2 exp(−w2/2v). The probabilities under �1 can be computed simi-
larly. Hence, standard recursive numerical integration algorithms can be used to compute the
probabilities in (7)–(9).

As an example, we compute the thresholds b, b̃, and c for the following adaptive test whose
performance is studied in Section 3.1. Here M=120, �=0.025, and we wish the power to be
close to 1− �̃=0.9 at �=�1=0.3. Setting �= �̃= 1

3 and �m =0.1, we first find b̃ by solving (12),
which can be expressed as

�(−[2b̃]1/2)+
∫ ∞

[2b̃/m]1/2
�

(−m(x−�1)−[2b̃k(x)]1/2
[k(x)−m]1/2

)
�m(mx)m dx= �̃ �̃= 0.1

3

by the analog of (15) for �=�1, where �v is as in (16). The integral is computed by numerical
integration, and a few iterations of the bisection method give b̃=1.99. This value is next used to
find b similarly by solving (13), which can be expressed as

�(−[2b]1/2)+
∫ [2b/m]1/2

[2b̃/m]1/2
�

(
mx−[2bk(x)]1/2

[k(x)−m]1/2
)

�m(mx)m dx=��= 0.025

3

by (15). The bisection method gives b=3.26, which we, in turn, use to find c by solving (14),
which is∫ [2b/m]1/2

[2b̃/m]1/2

∫ [2bk(x)]1/2

[2b̃k(x)]1/2
�

( [cM]1/2− y

[M−k(x)]1/2
)

�k(x)−m(y−mx)�m(mx)m dy dx=(1−�)�= 0.05

3

by (16), giving c=2.05.

2.3. Multiparameter extension

Suppose X1, X2, . . . are independent d-dimensional random vectors from a multiparameter expo-
nential family f�(x)=exp{�Tx−�(�)} of densities. The three-stage test in Section 2.1 can be
readily extended to test H0 :u(�)�u0, where u is any smooth real-valued function. As in Section 2.1,
n1=m and n3=M . The stopping rule of the three-stage test of H0 :u(�)�u0 is the same as
(4)–(6) but with nI (̂�n,� j ) replaced by

inf
�:u(�)=u j

n I (̂�n,�) (17)
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j =0,1, where u1>u0 is the alternative implied by the maximum sample size M and the desired
type II error probability �̃; see [15, Section 3.4]. In particular, the test stops and rejects H0 at stage
i�2 if

ni<M, u(̂�ni )>u0 and inf
�:u(�)=u0

ni I (̂�ni ,�)�b (18)

which is analogous to (4). Early stopping for futility (accepting H0) can also occur at stage i�2 if

ni<M, u(̂�ni )<u1 and inf
�:u(�)=u1

ni I (̂�ni ,�)�b̃ (19)

which is analogous to (5). The test rejects H0 at stage i=2 or 3 if

ni =M, u(̂�M )>u0 and inf
�:u(�)=u0

MI (̂�M ,�)�c (20)

accepting H0 otherwise. The thresholds b, b̃, and c are chosen to ensure certain type I and type II
error probability constraints that are similar to (7)–(9) and are computed by using the normal
approximation to the signed-root likelihood ratio statistic

�n(	)=n{sign(u(̂�n)−	)}
{
2 inf

�:u(�)=	
I (̂�n,�)

}1/2
under the hypothesis u(�)=	; see [15, p. 513]. Note that this normal approximation can be used
for the choice of u1 implied by the maximum sample size M and the type II error probability �̃.
The sample size n2 of the three-stage test is given by (2) with

n(�)=min

{
|log�|

/
inf

�:u(�)=u0
I (�,�), |log �̃|

/
inf

�:u(�)=u1
I (�,�)

}
(21)

which is a generalization of (3). Examples of the multiparameter case are given in Section 3.2
for normally distributed data with unknown variance and in Section 3.3 for two binomial
populations.

3. COMPARISON WITH OTHER TESTS

3.1. Normal mean with known variance

We consider the special case of normal Xi with unknownmean � and known variance 1 and compare
a variety of adaptive tests of H0 :��0 in the literature with the tests proposed in Section 2.1. In this
normal setting, �̂n = Xn and I (�,�)=(�−�)2/2. It is widely recognized that the performance of
adaptive tests is difficult to evaluate and compare because it depends heavily on the choice of first-
stage and maximum sample sizes, the number of groups (stages) allowed, and the parameter values
at which the tests are evaluated. For this reason, the tests evaluated here use the same first-stage
and maximum sample sizes, except for a few illustrative examples discussed below. In addition, we
report a variety of operating characteristics for each test—power, mean number of stages, and the
25th, 50th, and 75th percentiles in addition to the mean of the sample size distribution—over a wide
range of � values. A comprehensive evaluation of adaptive and group-sequential tests similar to this
has not appeared previously in the literature. We also include the uniformly most powerful FSS test

Copyright q 2008 John Wiley & Sons, Ltd. Statist. Med. 2008; 27:1593–1611
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with the same maximum sample size and type I error probability �, which provides the appropriate
benchmark for the power of any test of H0. Another relevant comparison—especially given their
widespread use in clinical trials—made here is with standard (non-adaptive) group-sequential tests
having a similar number of stages as the adaptive test.

To test H0 :��0, Proschan and Hunsberger [4] proposed a two-stage test, based on the conditional
power criterion, which uses the usual z-statistic but with a data-dependent critical value to maintain
the type I error at a prescribed level �. The test allows early stopping to accept (or reject) the
null hypothesis if the test statistic is below a user-specified upper normal quantile z p∗ (or above
some level k) at the end of the first stage. Choosing a data-dependent critical value is tantamount
to multiplying the z-statistic by a data-dependent factor and using a fixed critical value. Li et al.
[10] proposed to use the z-statistic with a fixed critical value c while still determining the second-
stage sample size by conditional power and maintaining the type I error at �. Their test stops
after the first stage if the test statistic falls below h or above k. For each h and conditional
power level, their test has a maximum allowable k, which they denote by k∗

1(h). Fisher [5]
proposed a ‘variance spending’ method for weighting the observations so that the type I error of
his test does not exceed �, despite its data-dependent second-stage sample size that is given by
the conditional power criterion. To avoid a very large second-stage sample size if the first-stage
estimate of � lies near the null hypothesis, Shen and Fisher [7] proposed early stopping due to
futility whenever the upper 100(1−�0) per cent confidence bound for � falls below some specified
alternative �1>0.

Table I compares these tests, a FSS test, and two standard group-sequential tests with the
adaptive test described in Section 2.1. The values of the user-specified parameters of the tests
are summarized in the list below. The user-specified parameters are chosen so that they have the
same first-stage sample size m=40 (except for the FSS test), maximum sample size M=120
(except for SF′; see the last paragraph of this section), type I error not exceeding �=0.025,
and nominal power (or conditional power level in the case of conditional power tests) equal
to 0.9.

• ADAPT: The adaptive test described in Section 2.1 that uses b=3.26, b̃=1.99, and c=2.05
corresponding to �= �̃= 1

3 in (7)–(9), and �m =0.1 (see Section 2.2 for details).
• FSS120: The FSS test having sample size 120.
• OBFPF, OBFSC: O’Brien and Fleming’s [21] one-sided group-sequential tests having three
groups of size 40. OBFPF uses power family futility stopping (�=1 in [1, Section 4.2])
and OBFSC uses stochastic curtailment futility stopping (
=0.9 in [1, Section 10.2]). Both
OBFPF and OBFSC use reference alternative �1=0.3; see below.

• PH: Proschan and Hunsberger’s [4] test that uses p∗ =0.0436 and k=2.05.
• L: Li et al.’s [10] test that uses h=1.63 and k=k∗

1(h)=2.83.
• SF,SF′: Two versions of Shen and Fisher’s [7] test; SF uses �0=0.425 and SF′ uses �0=
0.154.

The tests are evaluated at the � values where FSS120 has power 0.01,0.025,0.6,0.8,0.9,0.95,
and at �=0.15, the midpoint of �=0 and �=�1=0.3, the alternative implied by M=120 since
FSS120 has power 1− �̃=0.9 there. This is also the alternative used by the OBF tests for futility
stopping. Each entry in Table I is computed by Monte Carlo simulation with 100 000 replications.
To compare tests T , T ′ with type I error probability � but with different type II error probabilities
�̃T (�), �̃T ′(�) and expected sample sizes E�T , E�T

′ at �>0, Jennison and Turnbull [12] defined
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the efficiency ratio of T to T ′:

R�(T,T ′)= (z�+z�̃T (�))
2/E�T

(z�+z�̃T ′ (�))
2/E�T ′ ×100 (22)

noting that (z�+z�̃T (�))
2/�2 is the sample size of the FSS test with the same type I error probability

and power as T . Table I contains R�(T,N ) for all tests T and �>0, where N is the sample size
of ADAPT.

ADAPT has power comparable to FSS120 at all values of � while achieving substantial savings
in sample size, as shown by the percentiles and mean of the sample size. The three-stage OBF
tests have power comparable to ADAPT and FSS120, but ADAPT has sample size savings over
the OBF tests, especially for larger �>0, reflected by the efficiency ratio. The mean number of
stages (denoted by #) reveals that although ADAPT allows for the possibility of three stages, most
frequently it uses only one or two stages.

The conditional power tests PH, L, SF, and SF′ are underpowered at values of �>0 in Table I.
In particular, PH, L, and SF all have power less than 0.6 at �1=0.3, where ADAPT, FSS120, and
the OBF tests have power around 0.9. The lack of power of PH, L, and SF shown by Table I
is caused by stopping too early for futility. For example, the PH test stops for futility after the
first stage if Sm/

√
m falls below z p∗ =1.71. However, pr�1{Sm/

√
m<1.71}=0.44, well exceeding

the nominal type II error of 0.1. On the other hand, such stringent futility stopping is necessary
to control the sample size of conditional power tests. For example, the 0.025-level PH test that
stops for futility only when �̂m�0 (i.e. with p∗ =0.5) has expected sample size greater than 107

at all values of � in Table I, yet power less than 0.9 at �1. SF and SF′ provide another example
of this behavior. Since these tests stop for futility at the first stage when Sm/m��1−z�0/

√
m,

the choice of �0 determines the maximum sample size. For maximum sample size M=120, SF
uses �0=0.425, a high rate of first-stage futility stopping that results in small expected sample
sizes, low power, and a reduced type I error of 0.012, which is �=0.025 in the absence of futility
stopping. In contrast, SF′ uses less stringent futility stopping with �0=0.154 that corresponds to
maximum sample size 5M=600, which results in a type I error closer to 0.025 and better power,
although it is still underpowered and its expected sample size exceeds 120 at 0.2���0.26. The
smallest �0 that does not perturb the type I error of 0.025 of Shen and Fisher’s test is �0=0.039,
but the resultant test has expected sample size 1856 at �=0 and maximum sample size 52 341.

The efficiency ratios relative to ADAPT in Table I are all less than 100 with the exception
of PH, L, and SF at �=0.15, but it is not clear that the efficiency ratio has much meaning in
this case where the power of these tests is so low. For the other cases, it is natural to ask if
much more improvement is possible. A benchmark for answering this question is provided by the
optimal adaptive tests of Jennison and Turnbull [12, 14] that minimize the expected sample size
averaged over a collection of � values, subject to a given type I error probability and power level
at a prespecified alternative �′. Table II contains the expected sample size of T ∗

k , the k-stage test
minimizing

[E0(T )+E�′(T )+E2�′(T )]/3 (23)

among all k-stage tests with maximum sample size M=120, type I error probability �=0.025 and
power 0.8 at �′, the alternative where FSS100 has power 0.8, from [14, Table III]. To this benchmark,
we compare ADAPT with the same first group size m=29 as T ∗

3 , M=120, �1 fixed at �′, and
b=2.94, b̃=0.7, and c=2.05 corresponding to �= 1

2 , �̃= 3
4 . Also included in Table II is the optimal
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Table II. Expected sample size of ADAPT, optimal adaptive and group-sequential tests,
with �=0.025, power 0.8 at �′, first group size m and maximum sample size M=120

for normal data with known variance.

Test m E0N E�′N E2�′N

ADAPT 29 58.1 81.2 41.5
T ∗
3 29 54.9 78.9 39.5

OGS(3) 34 58.2 78.1 43.0
T ∗
2 43 64.0 85.3 49.0

OGS(2) 43 64.6 86.2 48.9
T ∗
4 24 50.9 75.2 36.0

OGS(4) 29 55.1 74.8 39.8

k-stage ‘�-family’ group-sequential test (denoted by OGS(k)) with M=120, groups 2, . . . ,k of
size (M−m)/(k−1), and with m and � chosen to minimize (23). Jennison and Turnbull [14]
concluded that OGS(k) is a computationally easier alternative to T ∗

k , and Table II shows that their
expected sample sizes are close at �=0,�′,2�. Note that ADAPT has expected sample size close
to OGS(3) and T ∗

3 even though the probability that ADAPT uses only one or two stage is 96.4,
83.1, and 98.4 per cent for �=0,�′, and 2�′, respectively, showing that ADAPT very often behaves
like a two-stage test. ADAPT has substantially smaller expected sample size than T ∗

2 and OGS(2),
however. On the other hand, T ∗

4 is more efficient than ADAPT, but this is due in part to its smaller
first group of m=24, afforded by its additional stage. Here, we have matched the first group m=29
of ADAPT to the that of T ∗

3 for the purpose of comparison, but in practice there is flexibility in
its choice of m. The T ∗

k and OGS(k) tests, on the other hand, are rigid in their choice of m that is
determined by dynamic programming from the prespecified alternative �′, about which there may
be some uncertainty before the trial.

Lokhnygina [22], who considers somewhat different objective functions than (23), has computed
and plotted the data-dependent total sample size of the optimal two-stage design as a function of
the first-stage sample mean Xm . Her results show the total sample size to be a unimodal function
of Xm , peaking between 0 and �′. For comparison, Figure 1 plots the function n(�) (3) in the
sample size updating rule (2) of ADAPT for the setting of Table II. A similar shape is exhibited by
Figure 2.2 of [22] on the total sample size function (which is m plus the second-stage sample size)
of the optimal two-stage test. This is not surprising because to be optimal, the expected sample size
cannot differ much from Hoeffding’s [17] lower bound, of which n(�) is a close approximation.
Figure 1 differs dramatically from the total sample size function of any untruncated two-stage
conditional power rule which increases to infinity as �̂m approaches 0. Jennison and Turnbull
[23, p. 672] have also pointed out this and suggested that this is a source of inefficiency of two-stage
conditional power tests.

3.2. Case of unknown variance

The optimal adaptive test T ∗
k and the optimal group-sequential tests OGS(k) in Table II require

the variance of the observations to be known. As pointed out above, in practice there is often little
information about the sampling variability before the trial. Dynamic programming is difficult to
carry out for the optimal adaptive test when the X1, X2, . . . are i.i.d. N(�,�2), and both � and
� are unknown, and no analog of T ∗

k has been developed in this setting. However, the optimal
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Figure 1. The function n(�) when the Xi are N(�,1), �=0.025, and �̃=0.2.

group-sequential tests OGS(k) in Table II can be modified for the present setting by applying their
error-spending functions to the sequential t-statistics, as described in [1, Section 11.5], which are
denoted by OGS∗(k). In this section, we compare ADAPT with OGS∗(k) and other tests for a
normal mean when the variance is unknown. In the notation of Section 2.3, �=(�,�)T, u(�)=�,
u0=0, and the generalized likelihood ratio statistic (17) is

(n/2) log

⎡⎣1+
(
Xn−u j

�̂n

)2
⎤⎦

where �̂n is the MLE of �. Denne and Jennison [24] proposed an adaptive group-sequential
extension of Stein’s [25] two-stage t-test in which the total sample size and stopping boundaries
are updated at each stage as a function of the current estimate of �2. Lai and Shih [15] introduced
tests of composite hypotheses for a multiparameter exponential family which use the same stopping
rules (18)–(20) as ADAPT but with prespecified group sizes. The expected number of stages,
power, and expected sample size of these tests are given in Table III at various (�,�) values.
All tests use m=34 (with the exception of OGS∗(4)) and M=120 (with the exception of DJ
that has unbounded maximum sample size), the first-stage and maximum sample sizes of OGS(3)
in Section 3.1, and nominal power levels �=0.025 and 1− �̃=0.8 at (�,�)=(0,1) and (�′,1),
respectively, where �′ is as in Section 3.1. Other values of the user-specified parameters of the
tests are listed as follows:

• ADAPT: The adaptive test described in Section 2.3 with u1 fixed at �′, b=2.49, b̃=0.59 and
c=2.7 corresponding to �= 1

2 , �̃= 3
4 .• OGS∗(k): Jennison and Turnbull’s [1, Section 11.5] group-sequential t-test with k groups

and the same m and error-spending function as that of OGS(k) in Table II: OGS∗(3) uses
�=0.99 and group sizes 34, 43, 43; OGS∗(4) uses �=1.13 and group sizes 29, 30, 30, 31.
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• DJ: The adaptive three-stage t-test of Denne and Jennison [24] with �=0.99, to match
OGS∗(3).

• LS: Lai and Shih’s [15, Section 3.4] group-sequential test with group sizes 34, 43, 43, so that
m=34 and M=120.

When �=1, ADAPT, OGS∗, and DJ have similar power and expected sample size properties,
with ADAPT having the smallest expected number of stages and smaller expected sample size
than OGS∗(3). LS has the highest power of the five tests, but highest expected sample size too.
When �<1 and �=0, ADAPT has substantially smaller expected sample size than OGS∗(3) and
even OGS∗(4). DJ has similar operating characteristics to ADAPT and LS when �<1. However,
when �>1, the expected sample size of DJ becomes much larger than those of other tests because
its total sample size is chosen to be proportional to the estimate of �2 at the end of the previous
stage. In all cases evaluated, ADAPT has the smallest expected number of stages, less than 2 in
each case, showing that it most often behaves like a FSS or two-stage test, as in the variance
known setting of Table I.

3.3. Coronary intervention study

The NHLBI Type II Coronary Intervention Study [26] was designed to investigate the cholesterol-
lowering affects of cholesytyramine on patients with type II hyperlipoproteinemia and coronary
artery disease. Patients were randomized into cholesytyramine and placebo groups, and coronary
angiography was performed before and after five years of treatment. It was found that the disease
had progressed in 20 of 57 in the placebo group and 15 of 59 in the cholesytyramine group.
Proschan and Hunsberger [4] and Li et al. [10] have considered how this study could have been
extended by using their two-stage tests for the difference in two normal means with common
unknown variance. To apply these tests to the NHLBI study, they assumed the first-stage sample
size to be 58=(57+59)/2 for the normal problem and used the arcsine transformation so that the
difference between the transformed binomial frequencies, p1 for the placebo group and p2 for the
treatment group, is approximately normally distributed; details are given in the following paragraph.
As an alternative, we apply the three-stage test in Section 2.3 to two binomial populations. In the
notation of Section 2.3, to test H0 : p2�p1 we have �=(p1, p2)T, u(�)= p2− p1, u0=0, and the
test statistic inf�:u(�)=	 nI (̂�n,�) in (18)–(20) takes the following form:

n

{
p̂1,n log

(
p̂1,n
p	,n

)
+ q̂1,n log

(
q̂1,n

1− p	,n

)
+ p̂2,n log

(
p̂2,n

p	,n+	

)
+ q̂2,n log

(
q̂2,n

1− p	,n−	

)}
where p̂i,n is the maximum likelihood estimator of pi based on n observations, q̂i,n =1− p̂i,n , and
p	,n is the maximum likelihood estimator of p1 under the assumption p2− p1=	. The treatment
and placebo groups are assumed to have the same per-group sample size during interim analyses,
following Proschan and Hunsberger [4] and Li et al. [10].

Letting Sn denote the sum of independent normal random variables with mean � and variance 1,
and following a pilot study of size m resulting in Sm =sm , Proschan and Hunsberger’s [4] test
chooses n2 and critical value c to satisfy the conditional power criterion:

pr{Sn2/n1/22 >c|Sm =sm,�=sm/m1/2}�1− �̃ (24)

and type I error constraint

pr0{Sn2/n1/22 >c|Sm =sm}=� (25)
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Table III. Expected number of stages, power and expected sample size of ADAPT and other tests for
normal data with unknown variance.

(�,�) ADAPT OGS∗(3) OGS∗(4) DJ LS

�=1
(0,1) 1.3 1.6 1.8 2.2 1.8

2.5 per cent 2.5 per cent 2.5 per cent 2.6 per cent 2.5 per cent
56.5 58.3 53.5 59.7 67.0

(0.25,1) 1.6 2.1 2.6 2.5 2.4
62.1 per cent 69.9 per cent 68.8 per cent 57.2 per cent 73.0 per cent
78.6 82.2 77.8 71.2 93.6

(�′,1) 1.6 2.1 2.5 2.5 2.3
72.4 per cent 79.3 per cent 78.5 per cent 68.1 per cent 82.3 per cent
76.7 79.7 75.0 70.0 90.2

(0.3,1) 1.6 2.0 2.5 2.4 2.2
78.1 per cent 84.5 per cent 83.7 per cent 74.3 per cent 87.1 per cent
74.9 77.3 72.7 69.2 87.3

(2�′,1) 1.1 1.3 1.4 2.1 1.3
99.6 per cent 99.9 per cent 99.9 per cent 99.7 per cent 99.9 per cent
42.7 45.0 41.0 52.5 47.8

�<1
(0, 34 ) 1.1 1.6 1.8 1.9 1.4

2.1 per cent 2.5 per cent 2.5 per cent 2.4 per cent 1.8 per cent
42.8 58.4 53.5 47.8 51.2

(0, 12 ) 1.0 1.6 1.8 1.0 1.1
1.4 per cent 2.6 per cent 2.5 per cent 2.4 per cent 0.7 per cent

34.2 58.1 53.7 34.1 37.0
(�′, 12 ) 1.0 1.3 1.4 1.0 1.3

88.3 per cent 99.9 per cent 99.9 per cent 88.7 per cent 95.3 per cent
35.8 45.0 41.0 34.1 45.6

(0, 13 ) 1.0 1.6 1.8 1.0 1.0
1.4 per cent 2.5 per cent 2.5 per cent 2.3 per cent 0.5 per cent

34.0 58.3 53.4 34.0 34.0
(0, 14 ) 1.0 1.6 1.8 1.0 1.0

1.4 per cent 2.4 per cent 2.4 per cent 2.5 per cent 0.5 per cent
34.0 58.2 53.4 34.0 34.0

�>1
(0,2) 1.6 1.6 1.8 2.3 2.5

2.5 per cent 2.5 per cent 2.5 per cent 2.4 per cent 2.5 per cent
84.2 58.3 53.6 225.5 97.2

(2�′,2) 1.8 2.1 2.5 2.2 2.4
78.2 per cent 79.4 per cent 78.4 per cent 99.6 per cent 84.5 per cent
86.9 79.6 75.3 195.5 94.2

(3�′,2) 1.5 1.7 1.9 2.0 1.8
97.8 per cent 97.4 per cent 98.4 per cent 99.9 per cent 99.4 per cent
64.9 63.0 56.7 178.1 66.6

(4�′,2) 1.2 1.3 1.4 2.0 1.3
99.9 per cent 99.9 per cent 99.9 per cent 99.9 per cent 99.9 per cent
42.9 45.0 42.0 177.6 47.8

(4�′,3) 1.3 1.8 2.1 2.0 2.0
96.2 per cent 95.7 per cent 95.3 per cent 99.9 per cent 97.8 per cent
69.0 67.0 62.2 395.5 75.5
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In order to solve for n2 and c, a parametric form for the probability in (25) is assumed, which
contains a user-specified futility boundary h and critical value k for the internal pilot. Li et al. [10]
introduce a modification of Proschan and Hunsberger’s [4] test in which the critical value c is
specified before the internal pilot study but h, k, and n2 are chosen to satisfy (24) and (25) after
the internal pilot study. This modification allows approximations to the probabilities in (24) and
(25) to be used in lieu of a specific parametric form. For the coronary intervention study, Proschan
and Hunsberger [4] and Li et al. [10] propose using these tests with the variance-stabilizing
transformation Sn =(2n)1/2{arcsin( p̂1/21,n )−arcsin( p̂1/22,n )}.

Table IV gives the power, per-group expected sample size, and efficiency ratio (22), using
the normal approximation, relative to ADAPT (for alternatives p2>p1) of the following tests
for various values of p1, p2 near 15

59 =0.254 and 20
57 =0.351, the values observed in the NHLBI

study [26].
• L: Li et al.’s [10] test with h=1.036, k=1.82, c=1.7, �=0.05, conditional power level 0.8,
and first-stage size m=58.

• PH: Proschan and Hunsberger’s [4] test with h=1.036, k=1.82, �=0.05, conditional power
level 0.8, and first-stage size m=58.

Table IV. Power, expected sample size, and efficiency ratio (in parentheses and
at p2>p1) of the tests of H0 : p2�p1.

p1 p2 L PH ADAPT

0.20 0.15 0.7 per cent 0.7 per cent 0.3 per cent
63.4 63.0 98.6

0.20 5.2 per cent 5.2 per cent 5.0 per cent
75.8 74.5 158.2

0.30 53.0 per cent 51.8 per cent 81.8 per cent
102.0 (89.7) 97.2 (90.8) 206.1 (100)

0.35 77.1 per cent 76.2 per cent 97.4 per cent
95.3 (73.3) 90.7 (75.1) 160.5 (100)

0.25 0.20 0.8 per cent 1.0 per cent 0.4 per cent
64.7 64.5 111.2

0.25 5.2 per cent 5.1 per cent 5.0 per cent
77.3 75.8 171.2

0.35 48.3 per cent 47.0 per cent 79.2 per cent
97.7 (90.5) 93.3 (91.9) 213.1 (100)

0.40 72.7 per cent 71.7 per cent 96.7 per cent
94.1 (74.1) 89.7 (76.3) 170.3 (100)

0.30 0.25 0.9 per cent 0.9 per cent 0.4 per cent
65.5 64.7 122.2

0.30 5.1 per cent 5.0 per cent 5.0 per cent
75.1 73.7 177.0

0.40 45.3 per cent 44.3 per cent 76.6 per cent
96.4 (92.7) 92.0 (95.1) 218.3 (100)

0.45 70.9 per cent 69.9 per cent 96.2 per cent
96.1 (75.2) 91.4 (77.6) 176.9 (100)

Note: The boldface numbers represent those at the NHLBI parameter values, where
L and PH are markedly under-powered.
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• ADAPT: The adaptive test described in a previous paragraph with m=58, M=302 (the
maximum sample size of L), and thresholds b=2.36, b̃=1.1, and c=1.55 corresponding to
�=0.05, �̃=0.2, and �= �̃= 1

2 .

All three tests use the same first-stage size m=58. ADAPT matches the maximum sample size
M=302 of L, and the parameters of PH determine its maximum sample size to be slightly larger
at 354. The actual power of L and PH is around 50 per cent for the values of p1 and p2 in Table IV
with p2− p1=0.1 and is less than 50 per cent when p1=0.254 and p2=0.351 where they were
designed to have conditional power 80 per cent. This is caused in part by premature stopping for
futility at the end of the first stage. Indeed, L and PH use the same futility boundary and their
probability of stopping at the end of the first stage when p1=0.254 and p2=0.351 is 0.47, well
exceeding the nominal type II error probability 0.2. One might ask if a conditional power test
can avoid this phenomenon by using a larger first-stage sample size so that the estimate p̂2− p̂1
is near 0 less often after the first stage when the true difference p2− p1 is substantially greater
than 0. If the first-stage sample size of L is raised to 162 (raising the maximum sample size to
1331), the resultant test has power 79 per cent when p1=0.254 and p2=0.351, approximately
equal to the power of ADAPT. However, the expected sample size of this version of L is 264 at
this alternative, compared with the expected sample size 213.1 of ADAPT. Similar oversampling
also occurs for the values of p1 and p2 in Table IV with p2− p1>0.1, where the power of L and
PH is closer to the nominal conditional power level of 80 per cent, but the efficiency ratio drops
to around 75 per cent.

4. DISCUSSION

Most previous works in the literature on adaptive design of clinical trials and mid-course sample
size adjustments have focused on two-stage designs whose second-stage sample size is deter-
mined by the results from the first stage using conditional power. Although this approach is
intuitively appealing, it does not adjust for the uncertainty in the first-stage parameter estimates
that are used to determine the second-stage sample size. This can result in substantial power
loss, as shown in Section 3.1. Although Jennison and Turnbull [8] and Tsiatis and Mehta [9]
have pointed out the inefficiency of this approach and advocate instead using group-sequential
designs, their critique focuses on the use of non-sufficient ‘weighted’ test statistics and variability
in the interim estimate. Through our extensive simulation studies, we have shown that another
problem with conditional power methods in practice is potential lack of power, which results
from the difficulty in bridging conditional power with actual power and in choosing a futility
stopping rule.

In their recent survey of adaptive designs, Burman and Sonesson [27] pointed out that previous
criticisms of the statistical principles and properties of these designs may be unconvincing in
some situations when flexibility and not having to specify parameters that are unknown at the
beginning of a trial (like the relevant treatment effect or variance) are more imperative than
efficiency or being powerful, whereas most efficient group-sequential designs require the prespec-
ification of the relevant alternative and variance, as in the case of the optimal adaptive tests of
Jennison and Turnbull [12, 14]. Moreover, conditional power tests are easy to implement, while
optimal adaptive tests require substantial dynamic programming computations. The adaptive tests
of Section 2 combine the attractive features of both the conditional power and group-sequential
tests. Rather than achieving exact optimality at a specified collection of alternatives through
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dynamic programming, they achieve asymptotic optimality over the entire range of alternatives,
resulting in near optimality in practice; see Section 3.1. These tests are based on efficient gener-
alized likelihood ratio statistics which have an intuitively ‘adaptive’ appeal via estimation of
unknown parameters by maximum likelihood, ease of implementation, and freedom from having
to specify the relevant alternative (through the implied alternative) that conditional power tests
enjoy. As shown in Section 2.3, these generalized likelihood ratio statistics and the associ-
ated adaptive tests can be readily extended to multiparameter settings with nuisance parameters
and they enjoy near optimality in these more complicated and realistic settings as well, see
Sections 3.2 and 3.3.

The possibility of adding a third stage to improve two-stage designs dated back to Lorden [18],
who used upper bounds for the type I error probability that are overly conservative for applications
to clinical trials, which need to maintain the type I error probability of the test at a prescribed
level because of regulatory and publication requirements, see the references in Section 1. We
have modified Lorden’s three-stage test by combining its basic features to preserve its asymptotic
optimality with those of Lai and Shih [15] for efficient group-sequential designs. The adaptive test
in Section 2 makes use of the maximum sample size M to come up with an implied alternative that
is used to choose the rejection and futility boundaries appropriately so that the test does not lose
much power in comparison with the (most powerful) FSS test of the null hypothesis vs the implied
alternative. This idea has led to the superior power properties of ADAPT in Table I, comparable
to those of the FSS test. Moreover, the expected number of stages of ADAPT in Table I ranges
from 1.5 to 2.07 and is less than 2 for all cases in Table III. Therefore, ADAPT is not much less
convenient to run than the FSS test (with only 1 stage), in contrast with group-sequential tests
with 3, 4, 5 or more interim analyses of the accumulated data. In practical terms, this can provide
substantial savings in the operational costs of the trial by eliminating the need for data monitoring
at interim analyses since the updated sample size and stopping rule are completely determined at
the end of the pilot stage.

On the other hand, there are situations where adding an additional stage or increasing the
maximum sample size may be desired, as pointed out by Cui et al. [28] and Lehmacher and
Wassmer [29]. For example, Cui et al. [28] cite a study protocol, which was reviewed by the
Food and Drug Administration, involving a Phase III group-sequential trial for evaluating the
efficacy of a new drug to prevent myocardial infarction in patients undergoing coronary artery
bypass graft surgery. During interim analysis, the observed incidence for the drug achieved a
reduction that was only half of the target reduction assumed in the calculation of the maximum
sample size M , resulting in a proposal to increase the maximum sample size to Nmax. The basic
idea underlying the proposed test in Section 2 can be easily modified to allow the increase
in the maximum sample size from M to no more than Nmax after the second stage, resulting
in a test with at most four stages. The type I error probability of the modified test can be
computed numerically by recursive integration or by Monte Carlo simulations, as described in
Section 2.
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