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ABSTRACT
We propose a general and flexible procedure for testing multiple
hypotheses about sequential (or streaming) data that simultaneously
controls both the false discovery rate (FDR) and false nondiscovery
rate (FNR) under minimal assumptions about the data streams, which
may differ in distribution and dimension and be dependent. All that
is needed is a test statistic for each data stream that controls its con-
ventional type I and II error probabilities, and no information or
assumptions are required about the joint distribution of the statistics
or data streams. The procedure can be used with sequential, group
sequential, truncated, or other sampling schemes. The procedure is a
natural extension of Benjamini and Hochberg’s (1995) widely used
fixed sample size procedure to the domain of sequential data, with
the added benefit of simultaneous FDR and FNR control that
sequential sampling affords. We prove the procedure’s error control
and give some tips for implementation in commonly encountered
testing situations.
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1. Introduction

Multiple testing error metrics based on the false discovery proportion, such as its
expectation of the false discovery rate (FDR), are widely used in applications involving
large or high-dimensional data sets or when many comparisons are needed. These areas
include high-throughput gene and protein expression data, brain imaging, and astro-
physics; M€uller et al. (2007, section 1) give a variety of examples. Since Benjamini and
Hochberg’s (1995) seminal paper introducing FDR and proving that Simes’ (1986) ear-
lier step-up procedure controls FDR, the topic and related problems such as empirical
Bayes have been active areas of research; see Efron et al. (2001), Efron and Tibshirani
(2002), Genovese and Wasserman (2002), Storey (2002), Newton et al. (2004), Storey
et al. (2004), and Cohen and Sackrowitz (2005).
One characteristic of the data in some of the application areas mentioned above is

that they arrive sequentially in time, or as data streams. One such area is in certain
types of clinical trials, in particular the setting discussed by Berry and Berry (2004) in
which treatments are compared on the basis of a long list of adverse events affecting
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the patients during the trial; multiple-endpoint clinical trials such as this are discussed
in more detail in Sections 2 and 5.3. Other areas of application involving multiple data
streams include data from pharmacovigilance drug side effect databases (e.g., Avery
et al., 2011), testing for disease clusters over a spatial area (e.g., Sonesson, 2007) and
closely related problems of industrial quality control (see Woodall, 2006), and testing
for a signal in a noisy image (e.g., Siegmund and Yakir, 2008).
However, the particular needs of sequential data have largely been neglected in the

FDR literature, and most papers adopt Benjamini and Hochberg’s (1995) starting point,
a set of p-values arising from fixed sample size hypothesis tests. Our goal is to introduce
an FDR-controlling procedure with as much flexibility as the Benjamini-Hochberg (BH)
procedure but tailored for sequential data, by allowing for accept/reject decisions in
between sequential sampling of data streams. In Section 3 we introduce such a proced-
ure, which we call the sequential BH procedure that controls FDR as well as its type II
analog, the false nondiscovery rate (FNR, both defined below), under independence of
data streams and under arbitrary dependence with a small logarithmic inflation of the
prescribed values; these results mirror the conditions under which Benjamini and
Hochberg (1995) proved FDR control in their original paper. We make minimal
assumptions about the data streams, which may differ in distribution and dimension.
The only thing the procedure needs is a test statistic for each data stream that controls
the conventional type I and II error probabilities; that is, only marginal information
about the individual test statistics is needed, and no information or assumptions are
required about the joint distribution of the data streams or statistics. Likewise, there are
no restrictions on the hypotheses that can be tested (i.e., any combination of simple/com-
posite null and alternative hypotheses) provided that the conventional type I and II error
probabilities can be controlled. The procedure can be used with sequential, group sequen-
tial, truncated, or other sampling schemes. The simultaneous control of FDR and FNR is a
feature of the sequential setting we consider, but if there is a restriction on the maximum
sample size of a given stream, it may not be possible to achieve simultaneous FDR and
FNR control because the needed error bounds (3.3)–(3.4) may not both be satisfied. For
this situation or one in which FNR control is simply not a priority of the statistician, in
Section 4 we give a “rejective” version of the procedure that only stops early to reject null
hypotheses and explicitly controls FDR but not necessarily FNR. To aid with implementa-
tion of either of these procedures, in Section 5 we review how to construct the component
sequential tests and give closed-form expressions for the needed critical values in some
commonly encountered testing situations. In Section 6 we discuss a simulation study com-
paring the proposed procedure to its fixed sample size analog, and the article concludes
with a discussion of extensions and more suggestions for implementation.
On the one hand, our approach to deriving sequential procedures that control FDR is

inspired by recent advances by Sarkar (1998), Benjamini and Yekutieli (2001), and
Storey et al. (2004) that broaden the conditions under which the BH procedure controls
FDR and that give a better understanding of FDR in general. On the other hand, this
work also springs from recent advances (Bartroff and Lai, 2010; Bartroff and Song,
2014, 2015) occurring for sequential procedures controlling familywise error rate
(FWER) and other error rates (Bartroff, 2018). Although the sequential BH procedure
may appear similar to the sequential procedures of these authors controlling the FWER,
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the underlying principles of FDR and FWER are fundamentally much different and
hence any similarity is only superficial.
A distinct but related sequential multiple testing setup has been considered in recent

work by Chen and Arias-Castro (2017) and Javanmard and Montanari (2018). In these
papers, a sequence of null hypotheses and their p-values are observed over time and
accept/reject decisions are made in a manner that controls FDR. Whereas this setup
may be thought of as a single stream of experiments, each one already terminated and a
terminal p-value computed, it differs from the current article, which considers multiple
streams of data and proposes procedures that decide when to terminate each stream
individually.

2. Motivating example: Multiple-endpoint clinical trials

There are economic, administrative, and ethical reasons why data from clinical trials are
often analyzed sequentially. Sequential (or group sequential) clinical trials with multiple
endpoints, or clinical outcomes of interest represented as hypotheses, are a special case
of the general setup that we will address in Section 3.1. Suppose a trial concerns K � 2

endpoints, each represented by a null hypothesis H kð Þ, k 2 ½K�, which denotes as
f1, 2, :::,Kg throughout. Suppose that patients are evaluated sequentially; the group
sequential setting requires only minor modifications mentioned at the end of this para-

graph. Measurements or data are taken on the nth patient and we let X kð Þ
n denote the vector

of data on the nth patient concerning the kth endpoint. Certain data points may be relevant
for more than one endpoint, so there may be substantial (if not complete) overlap between

X kð Þ
n and X k0ð Þ

n , say. But because the focus here is on procedures that stop early to accept or

reject certain endpoints, we do not assume that X kð Þ
n and X k0ð Þ

n are necessarily identical.
Thus, as the trial proceeds, if no endpoints are dropped we observe

X 1ð Þ
1 ,

X 2ð Þ
1 ,

X 3ð Þ
1 ,

..

.

X Kð Þ
1 ,

then

X 1ð Þ
2 ,

X 2ð Þ
2 ,

X 3ð Þ
2 ,

..

.

X Kð Þ
2 ,

then

X 1ð Þ
3 ,

X 2ð Þ
3 ,

X 3ð Þ
3 ,

..

.

X Kð Þ
3 ,

::: and soon: (2.1)

If the patients are evaluated in groups, the only notational modification needed is that

X kð Þ
n now denotes the vector of data on the nth group concerning the kth endpoint. The

total number of endpoints K may be large, especially with recent advances in genetic
testing that allow biomarkers to be included as endpoints. Examples are the adverse
event trials discussed by Berry and Berry (2004), mentioned in Section 1.
Another example is the randomized trial described by O’Brien (1984) to compare two

diabetes therapies, experimental and conventional, in the form of improvements in
nerve function of patients as measured through 34 different electromyographic (EMG)

endpoints. In this case, H kð Þ (k ¼ 1, :::,K ¼ 34) is the null hypothesis of no difference
between treatment and control in the change (baseline to evaluation) in the kth EMG
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variable, and X kð Þ
n is vector of differences in the kth EMG variable between patients in

the nth accrued group, which includes patients randomized to both the treatments.
Although the trial described by O’Brien (1984) was a fixed sample and hence a single
group, a sequential version would result in data of the form (2.1).

In the previous example X 1ð Þ
n ,X 2ð Þ

n , :::,X Kð Þ
n are vectors of the same length (i.e., the

number of patients in the nth group, or perhaps summary statistics thereof), but this is
not a requirement of the procedures proposed below in which these can be of arbitrary
size and shape and, further, may be dependent. This feature may be particularly useful
in multiple-endpoint clinical trials wherein data associated with different endpoints may
be of different size but also are likely to be correlated because they are measurements
on the same patient. For example, in clinical trials for AIDS treatments, it is common
(e.g., Fischl et al., 1987) to have multiple endpoints of both the continuous and categor-
ical types, like CD4 (T-cell) level, which is commonly modeled as a normal random
variable, and the binary indicator of opportunistic infectious disease like pneumonia,

modeled as a Bernoulli random variable. For a CD4 endpoint, X kð Þ
n may be the differ-

ence, after minus before, in CD4 count for the nth patient, modeled as normally distrib-

uted with unknown mean and variance l and r2, with associated endpoint H kð Þ : l � 0
of no positive treatment effect on CD4 count, versus the alternative l � d, where d > 0
is some minimal meaningful treatment effect. For an opportunistic infectious disease

endpoint, X kð Þ
n may be the indicator of the disease in the nth patient, modeled as a

Bernoulli random variable taking the value 1 with unknown probability p, with associ-

ated endpoint H kð Þ : p � p0 where p0 is some baseline rate of disease occurrence in
healthy patients, versus the alternative p � p1, where p1 > p0 is an elevated occurrence
rate of interest. We will show how to implement the test statistics and critical values for
both of these examples in Section 5.3.
A feature of the sequential BH procedure defined in Section 3.2 is that it allows data

streams to be “dropped” (i.e., sampling terminated) when no more information is
needed to reach an accept/reject decision about the corresponding hypotheses. The need
to drop certain endpoints in a multiple endpoint clinical trial while continuing others
occurs frequently in practice because certain measurements are costly or invasive. An
example is the well-known Women’s Health Initiative (see Anderson et al., 2004;
Rossouw et al., 2002), one of the largest multiple-endpoint randomized prevention stud-
ies of its kind. The Women’s Health Initiative dropped the endpoints designed to inves-
tigate the effect of hormone replacement therapy on cardiovascular and cancer
outcomes in 2002 and 2005, respectively, but continued to follow-up participants for
dementia and other cognition-related endpoints. This portion of the study with the con-
tinued endpoints is known as the Women’s Health Initiative Memory Study (see
Espeland et al., 2004; Shumaker et al., 1998).

3. Control of FDR and FNR

3.1. General notation and setup

The methodology introduced below is to handle a general situation in which there are
K sequentially observable data streams:
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Data stream 1 X 1ð Þ
1 ,X 1ð Þ

2 , ::: from Experiment 1

Data stream 2 X 2ð Þ
1 ,X 2ð Þ

2 , ::: from Experiment 2

..

.

Data stream K X Kð Þ
1 ,X Kð Þ

2 , ::: from Experiment K:

(3.1)

In general we make no assumptions about the dimension of the sequentially observed

data X kð Þ
n , which may themselves be vectors of varying size, nor about the dependence

structure of within-stream data X kð Þ
n ,X kð Þ

n0 or between-stream data X kð Þ
n ,X k0ð Þ

n0 (k 6¼ k0).

Assume that for each data stream k 2 ½K� there is a parameter vector h kð Þ 2 H kð Þ gov-

erning that stream X kð Þ
1 ,X kð Þ

2 , :::, and it is desired to test a null hypothesis H kð Þ � H kð Þ

about h kð Þ, versus an alternative hypothesis G kð Þ � H kð Þ, which is disjoint from H kð Þ: A

null hypothesis H kð Þ is considered true if h kð Þ 2 H kð Þ, and H kð Þ is false if h kð Þ 2 G kð Þ: The

global parameter h ¼ h 1ð Þ, :::, h Kð Þ� �
is the concatenation of the individual parameters

and is contained in the global parameter space H ¼ H 1ð Þ � � � � �H Kð Þ: The FDR and
FNR are defined as

FDR ¼ FDR hð Þ ¼ Eh
V

R � 1

� �
and FNR ¼ FNR hð Þ ¼ Eh

U
S � 1

� �
,

where V is the number of true null hypotheses rejected, R is the number of null hypoth-
eses rejected, U is the number of false null hypotheses accepted, S is the number of null
hypotheses accepted, and x � y ¼ maxfx, yg:
For simplicity of presentation, we adopt the fully sequential setting so that n takes

the values 1, 2, :::; however, other sampling schemes are possible with only minor
changes to what follows and without changing our main result. For example, the

method presented here includes group sequential sampling, by either taking each X kð Þ
n

in (3.1) to be a group (i.e., vector) of data or, alternatively, letting n take values in a
sample size set N for which group sequential sampling with at most g groups of size m
corresponds to N ¼ fm, 2m, :::, gmg: For convenience we shall refer to the index n of

the data X kð Þ
n and test statistics as the “sample size” or “time.” However, because differ-

ent streams’ data X kð Þ
n and X k0ð Þ

n may be vectors of different sizes, this value n may not
refer to the actual sample size in any given stream. For the same reason, n may repre-
sent different “information times” across different streams, and does not necessarily
have to coincide with the calendar time of a particular analysis.

The BH procedure requires only a valid p-value p kð Þ for each null hypothesis H kð Þ

and, letting p k1ð Þ � p k2ð Þ � ::: � p kKð Þ, rejects H k1ð Þ, :::,H kuð Þ where u ¼ maxfs 2 ½K� :
p sð Þ � sa=Kg for a given desired FDR bound a, accepting all H kð Þ if the maximum does

not exist. Playing a role analogous to the p-values p kð Þ, in our sequential setting we util-

ize a sequential test statistic K kð Þ
n ¼ K kð Þ

n X kð Þ
1 , :::,X kð Þ

n

� �
associated with each data stream

k 2 ½K�: What follows could have been formulated completely in terms of sequential
p-values, making it look more like the BH procedure; however, we have chosen to use
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arbitrary sequential test statistics K kð Þ
n instead to maintain generality and to make the

resulting procedure more user-friendly, given the complexity and non-uniqueness of
sequential p-values in all but the simplest cases; see (Jennison and Turnbull, 2000, ch.

8.4 and 9). Nonetheless, sequential p-values can be used for the test statistics K kð Þ
n :

For each data stream k 2 ½K�, the test statistic K kð Þ
n must satisfy certain error proba-

bilities that only depend on its associated data stream X kð Þ
1 ,X kð Þ

2 , :::, and not on any
other data streams in any multivariate way. Specifically, given prescribed bounds a, b 2
0, 1ð Þ on the FDR and FNR, we assume that for each test statistic K kð Þ

n , k 2 ½K�, there
exist critical values

A kð Þ
1 � A kð Þ

2 ::: � A kð Þ
K � B kð Þ

K � B kð Þ
K�1 � ::: � B kð Þ

1 (3.2)

such that

Ph kð Þ K kð Þ
n � B kð Þ

s some n, K kð Þ
n0 > A kð Þ

1 all n0 < n
� �

� s
K

� �
a for all h kð Þ 2 H kð Þ, (3.3)

Ph kð Þ K kð Þ
n � A kð Þ

s some n, K kð Þ
n0 < B kð Þ

1 all n0 < n
� �

� s
K

� �
b for all h kð Þ 2 G kð Þ, (3.4)

for each s 2 ½K�: These error bounds simply guarantee that K kð Þ
n has critical values

allowing it to achieve conventional (i.e., not in any multiple testing sense) type I and II
error probabilities given by certain fractions of a and b, respectively. In particular, (3.3)

says that the sequential test on the kth data stream X kð Þ
1 ,X kð Þ

2 , :::, that samples until

K kð Þ
n 62 A kð Þ

1 ,B kð Þ
s

� �
, rejecting (respectively accepting) H kð Þ if K kð Þ

n crosses B kð Þ
s (respect-

ively A kð Þ
1 ) first, has type I error probability no greater than s=Kð Þa: Similarly, (3.4) says

that the test that samples until K kð Þ
n 62 A kð Þ

s ,B kð Þ
1

� �
has type II error probability no

greater than s=Kð Þb, for any s 2 ½K�: Below we will show that in many cases there are
standard sequential statistics that satisfy these error bounds, and there are standard soft-
ware packages that allow computation of the critical values, as well as even closed-form
formulas in some cases. Given critical values satisfying (3.3)–(3.4), the ordering (3.2)

holds without loss of generality because otherwise A kð Þ
s could be replaced by ~A

kð Þ
s ¼

maxfA kð Þ
1 , :::,A kð Þ

s g for which (3.4) would still hold, and similarly for B kð Þ
s : In addition,

the critical values A kð Þ
s ,B kð Þ

s may depend on the sample size n of the test statistic K kð Þ
n

being compared with them; however, we omit this from the notation in order to avoid
making it too cumbersome. This is because, although different test statistics will be
ranked and compared with the critical values at different stages, the test statistics being
compared always have the same current sample size n at the time of comparison (see

the definition of the ~K
kð Þ
n in step 1 of the procedure’s definition, below) making this

dependence possible. That is, ~K
1ð Þ
n , ~K

2ð Þ
n , ~K

3ð Þ
n , :::, will be ranked and compared, but never

with any ~K
kð Þ
n0 for n0 6¼ n:
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The individual sequential test statistics K kð Þ
n form the building blocks of our sequential

BH procedure, which we define in the next section. Like the original BH procedure,
which compares p-values, the sequential procedure involves ranking test statistics. At
the current level of generality, the sequential test statistics may be on completely differ-

ent scales, so we must introduce standardizing functions u kð Þ, k 2 ½K�, which are

applied to the test statistics K kð Þ
n before ranking them, and the sequential BH procedure

in the next section is defined in terms of standardized test statistics ~K
kð Þ
n ¼ u kð Þ K kð Þ

n

� �
:

The only required property of the standardizing functions is that they are increasing

functions such that u kð Þ A kð Þ
s

� �
and u kð Þ B kð Þ

s

� �
do not depend on k. For simplicity, here

we take the u kð Þ to be piecewise linear functions such that

u kð Þ A kð Þ
s

� �
¼ � K � sþ 1ð Þ and u kð Þ B kð Þ

s

� �
¼ K � sþ 1 for all k, s 2 K½ �: (3.5)

That is, for k 2 ½K� define

u kð Þ xð Þ ¼

x� A kð Þ
1 � K, for x � A kð Þ

1

x� A kð Þ
s

A kð Þ
sþ1 � A kð Þ

s

� K � sþ 1ð Þ, for A kð Þ
s � x � A kð Þ

sþ1 if A kð Þ
sþ1 > A kð Þ

s , 1 � s < K

2 x � A kð Þ
K

� �
B kð Þ
K � A kð Þ

K

� 1, for A kð Þ
K � x � B kð Þ

K

x� B kð Þ
s

B kð Þ
s�1 � B kð Þ

s

þ K � sþ 1, for B kð Þ
s � x � B kð Þ

s�1 if B kð Þ
s�1 > B kð Þ

s , 1 < s � K

x� B kð Þ
1 þ K, for x � B kð Þ

1 :

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

3.2. The sequential BH procedure controlling FDR and FNR

The sequential BH procedure is defined iteratively by defining its jth stage of sampling
(j ¼ 1, 2, :::), between which null hypotheses are accepted or rejected. Let I j denote the
indices of the active null hypotheses (i.e., the null hypotheses that have not been
accepted or rejected yet) at the beginning of the jth stage of sampling, let aj (respect-
ively rj) be the number of null hypotheses that have been accepted (respectively
rejected) at the beginning of the jth stage of sampling, and let nj denote the cumulative
sample size of the active data streams at the end of the jth stage of sampling.
Accordingly, set I 1 ¼ ½K�, a1 ¼ r1 ¼ 0, and n0 ¼ 0: The jth stage of sampling
(j ¼ 1, 2, :::) proceeds as follows.

1. Sample the active data streams X kð Þ
n

n o
k2I j, n>nj�1

until n equals

nj ¼ inf n > nj�1 : ~K
i n, ‘ð Þð Þ
n 62 � K � aj � ‘þ 1

� �
, aj þ ‘

� �
, some ‘ 2 jI jj

� 	n o
, (3.6)

where ~K
kð Þ
n ¼ u kð Þ K kð Þ

n

� �
and i n, ‘ð Þ 2 ½K� denotes the index of the ‘th ordered

active standardized statistic at sample size n.
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2. (a) If a lower boundary in (3.6) has been crossed—that is, if

~K
i nj, ‘ð Þð Þ

nj � � K � aj � ‘þ 1
� �

for some ‘ 2 jI jj
� 	

, (3.7)

then accept the mj � 1 null hypotheses

H i nj, 1ð Þð Þ,H i nj , 2ð Þð Þ, :::,H i nj ,mjð Þð Þ,
where

mj ¼ max m � jI jj : ~K i nj ,mð Þð Þ
nj � � K � aj �mþ 1ð Þ

n o
, (3.8)

and set ajþ1 ¼ aj þmj: Otherwise, set ajþ1 ¼ aj:
(b) If an upper boundary in (3.6) has been crossed—that is, if

~K
i nj , ‘ð Þð Þ

nj � aj þ ‘ for some ‘ 2 jI jj
� 	

,

then reject the m0
j � 1 null hypotheses

H i nj, jI jj�m0
jþ1ð Þð Þ,H i nj, jI jj�m0

jþ2ð Þð Þ, :::,H i nj , jI jjð Þð Þ, (3.9)

where

m0
j ¼ max m � jI jj : ~K i nj, jI jj�mþ1ð Þð Þ

nj � K � rj �mþ 1


 �
, (3.10)

and set rjþ1 ¼ rj þm0
j: Otherwise, set rjþ1 ¼ rj:

3. Stop if there are no remaining active hypotheses; that is, if ajþ1 þ rjþ1 ¼ K:
Otherwise, let I jþ1 be the indices of the remaining active hypotheses and continue
on to stage j þ 1.

In other words, the procedure samples all active data streams until at least one of the
active null hypotheses will be accepted or rejected, indicated by the stopping rule (3.6).
At this point, “step-up” acceptance and rejection rules (3.8) and (3.9), related to the BH
procedure’s rule, are used to accept or reject some active hypotheses in steps 2a and 2b,
respectively. After updating the list of active hypotheses, the process is repeated until no
active hypotheses remain.
Before stating our main result in Theorem 3.1 that this procedure controls both FDR

and FNR, we make some remarks about its definition.

(A) There will never be a conflict between the acceptances in Step 2a and the rejec-
tions in Step 2b. Suppose (toward contradiction) that at some stage j the rule in
Step 2a said to accept H kð Þ, whereas the rule in Step 2b said to reject H kð Þ: Then
k ¼ i nj, ‘

� �
for some ‘ � mj and ‘ � jI jj �m0

j þ 1: The former implies

~K
kð Þ
nj ¼ ~K

i nj ,mð Þð Þ
nj � ~K

i nj,mjð Þð Þ
nj � � K � aj �mj þ 1ð Þ < 0,

whereas the latter implies

~K
kð Þ
nj ¼ ~K

i nj,mð Þð Þ
nj � ~K

i nj, jI jj�m0
jþ1ð Þð Þ

nj � K � rj �m0
j þ 1 > 0,

a contradiction.
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(B) Ties in the order statistics ~K
kð Þ
n can be broken arbitrarily (at random, say) without

affecting the error control proved in Theorem 3.1.
(C) As mentioned above, the critical values A kð Þ

s ,B kð Þ
s can also depend on the current

sample size n of the test statistic K kð Þ
n being compared to them, with only nota-

tional changes in the definition of the procedure and the properties proved below;
to avoid overly cumbersome notation, we have omitted this from the presentation.
Standard group sequential stopping boundaries, such as Pocock, O’Brien-Fleming,
power family, and any others (see Jennison and Turnbull, 2000, ch. 2 and 4), can
be utilized for the individual test statistics in this way.

Our main result, given in Theorem 3.1, is that this procedure controls both FDR and
FNR at the prescribed levels a and b when the test statistics are independent, and con-
trols them at slightly inflated values of a and b under arbitrary dependence of data

streams, with the inflation factor given by
PK

k¼1 1=k, which is asymptotically equivalent
to logK for large K. This result generalizes the original result of Benjamini and
Hochberg (1995) for their fixed-sample-size procedure by building on the arguments of
Benjamini and Yekutieli (2001), and is proved in the Appendix.

Theorem 3.1. Fix a, b 2 0, 1ð Þ and suppose that (3.3)–(3.4) hold. Let K0 and K1 denote

the number of true and false null hypotheses H kð Þ, respectively, and let D ¼PK
k¼1 1=k.

Then, regardless of the dependence between the data streams, the sequential BH procedure
defined above satisfies

FDR hð Þ � D
K0

K

� �
a � Da and (3.11)

FNR hð Þ � D
K1

K

� �
b � Db for all h 2 H: (3.12)

Further, if the K0 data streams corresponding to the true null hypotheses are independent,
then the sequential BH procedure satisfies

FDR hð Þ � K0

K

� �
a � a for all h 2 H: (3.13)

If the K1 data streams corresponding to the false null hypotheses are independent, then
the sequential BH procedure satisfies

FNR hð Þ � K1

K

� �
b � b for all h 2 H: (3.14)

4. A rejective sequential BH procedure controlling FDR

In some applications where sequential sampling is called for, the statistician is primarily

concerned with stopping and rejecting a null hypothesis H kð Þ if it appears to be false,

but is content to continue sampling for a very long time if H kð Þ appears to be true.
Such tests have been called “power one tests” (see Mukhopadhyay and De Silva [2009,
ch. 5] or Siegmund [1985, ch. IV]). Some examples of this scenario are sequential moni-
toring of a process (such as manufacturing) where the null hypothesis represents the
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process being “in control” or monitoring a drug being used in a population and the
null hypothesis represents the drug being safe. In this section we present a version of
the sequential BH procedure with this property, which is obtained from the sequential
BH procedure in the previous section, by, roughly speaking, ignoring the lower bounda-

ries A kð Þ
s for the test statistics, plus a few other minor modifications.

In addition to the scenarios above, this version may be useful in applications where
there is a restriction on the maximum sample size. When this occurs, it may not be
possible to achieve the bounds (3.3) and (3.4), and one alternative available to the statis-
tician is to drop the requirement of guaranteed FNR control while still achieving guar-
anteed FDR control, which the procedure introduced below provides by only specifying
rejections (and not acceptances) of null hypotheses. For this reason we call it the rejec-
tive sequential BH procedure. Even in the presence of a maximum sample size or trun-
cation point, it may still be possible to achieve (3.4), which is simply a (marginal)
power condition on the kth component test statistic. The statistician can verify that
(3.4) is possible by checking whether the most stringent case, the s¼ 1 case, of (3.4)

holds for any values A kð Þ
1 ,B kð Þ

1 : See the Discussion for an alternative approach of using b
as a parameter for obtaining multiple testing procedures with desirable properties.

Let the data streams X kð Þ
n , test statistics K kð Þ

n , and parameters h kð Þ and h be as in Section 3.1.
Because only FDR will be explicitly controlled, we only require specification of null hypotheses

H kð Þ 	 H kð Þ and not alternative hypotheses G kð Þ, and H kð Þ is true if h kð Þ 2 H kð Þ and false
otherwise. As mentioned above, we also modify the fully sequential sampling setup of Section
3.1 to incorporate a maximum streamwise sample size (or “truncation point”) N in (4.1)
below because this is most natural in the scenarios mentioned above, although what follows
could be formulated without a truncation point or with sample sizes other than 1, :::,N by
replacing statements like n < N in what follows by n 2 N for an arbitrary sample size setN ,
with only notational changes. Without the need for lower stopping boundaries, given a desired

FDR bound a 2 0, 1ð Þ, for each test statistic K kð Þ
n , k 2 ½K�, we only require the existence of

“upper” critical values B kð Þ
K � B kð Þ

K�1 � ::: � B kð Þ
1 satisfying

Ph kð Þ K kð Þ
n � B kð Þ

s some n < N
� �

� s
K

� �
a for all s 2 K½ �, h kð Þ 2 H kð Þ: (4.1)

Similar to (3.3), this is just a bound on the type I error probability of the sequential test

that stops and rejects H kð Þ at time n < N if K kð Þ
n � B kð Þ

s and accepts H kð Þ otherwise. The

standardizing functions u kð Þ can be any increasing functions such that u kð Þ B kð Þ
s

� �
does

not depend on k. Here we take

u kð Þ xð Þ ¼

x � B kð Þ
K þ 1, for x � B kð Þ

K

x � B kð Þ
s

B kð Þ
s�1 � B kð Þ

s

þ K � sþ 1, for B kð Þ
s � x � B kð Þ

s�1 if B kð Þ
s�1 > B kð Þ

s , 1 < s � K

x � B kð Þ
1 þ K, for x � B kð Þ

1 ,

8>>>>><
>>>>>:

for all k, s 2 ½K�, giving u kð Þ B kð Þ
s

� �
¼ K � sþ 1:
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Letting I j, nj be as in Section 3.2, the jth stage (j ¼ 0, 1, :::) of the rejective sequential
BH procedure is defined as follows.

1. Sample the active data streams X kð Þ
n

n o
k2I j, n>nj�1

until n equals

nj ¼ N � inf n > nj�1 : ~K
i n, ‘ð Þð Þ
n � ‘, some ‘ 2 jI jj

� 	n o
, (4.2)

where ~K
kð Þ
n ¼ u kð Þ K kð Þ

n

� �
and i n, ‘ð Þ denotes the index of the ‘th-ordered active

standardized statistic at sample size n.
2. If nj < N , then reject the null hypotheses

H i nj , ‘jð Þð Þ,H i nj, ‘jþ1ð Þð Þ, :::,H i nj , jI jjð Þð Þ,
where

‘j ¼ min ‘ 2 jI jj
� 	

: K
i nj, ‘ð Þ
nj � ‘

n o
: (4.3)

Set I jþ1 to be the indices of the remaining hypotheses and proceed to stage jþ 1.
3. Otherwise, n ¼ N , so accept all active hypotheses H kð Þ, k 2 I j, and stop.

Like the sequential BH procedure, this procedure samples all active test statistics until
at least one of them will be rejected, indicated by the stopping rule (4.3), which is simi-
lar to the BH rejection rule. Then a step-up rejection rule is used in Step 2 to reject
certain hypotheses before the next stage of sampling begins. When the truncation point
N is reached, all remaining active hypotheses are accepted. The next theorem shows
that, similar to the sequential BH procedure, the rejective procedure has guaranteed
FDR control under independence of true hypotheses, and FDR control with a slight
inflation factor under arbitrary dependence.

Theorem 4.1. Fix a 2 0, 1ð Þ. In the above setup, suppose that there are K0 true null

hypotheses H kð Þ and that (4.1) holds. Then the rejective sequential BH procedure defined
above satisfies (3.13) if the K0 data streams corresponding to the true null hypotheses are
independent, and it satisfies (3.11) under arbitrary dependence between data streams.

The proof of Theorem 4.1 is similar to that of Theorem 3.1 and thus is omitted.

5. Implementation

In this section we discuss constructing sequential test statistics and critical values satis-
fying (3.3)–(3.4) (or 4.1 for the rejective version of the procedure) for individual data
streams, and give some examples. Unlike many fixed-sample-size settings, critical values
for sequential (or group sequential) test statistics can rarely can be written down as
exact, closed-form expressions. However, critical values for sequential test statistics are
routinely computed to sufficient accuracy using software packages, Monte Carlo, or
some form of distributional approximation, asymptotic or otherwise. In Section 5.1 we

give closed-form expressions for the critical values A kð Þ
s ,B kð Þ

s satisfying (3.3)–(3.4) to a
very close approximation and that are based on the simple and widely used Wald
approximations for the critical values of the sequential probability ratio test (SPRT) for
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testing simple-vs.-simple hypotheses, which are routinely used as surrogates for more
complicated testing situations by monotone likelihood ratio, least favorable distribu-
tions, and other similar considerations; see Lehmann and Romano (2005, ch. 3.4 and
3.8) and Siegmund (1985, ch. II.3). For more complicated testing situations, sequential
generalized likelihood ratio statistics and their signed-root normal approximations are
discussed in Section 5.2. Though these approaches will address many of the commonly
encountered testing situations, they do not cover every possible testing situation, so we
stress that the multiple testing procedure’s FDR and FNR control will hold no matter
the form of the hypotheses and test statistic provided that (3.3)–(3.4) are satisfied;
hence, the critical values obtained in ways other than those discussed here may be used.

5.1. Simple hypotheses and their use as surrogates for certain composite
hypotheses

In this section we show how to construct the test statistics K kð Þ
n and critical values

A kð Þ
s ,B kð Þ

s satisfying (3.3)–(3.4) for any data stream k such that H kð Þ and G kð Þ are both
simple hypotheses. This setting is of interest in practice because many more complicated
composite hypotheses can be reduced to simple hypotheses. Indeed, M€uller et al. (2007,
section 1) pointed out that testing a battery of simple-vs.-simple hypothesis tests is the
standard setup in most discussions of FDR in the literature. In this case, the test statis-

tics K kð Þ
n will be taken to be log-likelihood ratios because of their strong optimality

properties of the resulting test, the SPRT; see Chernoff (1972). In order to express the
likelihood ratio tests in simple form, we now make the additional assumption that each

data stream X kð Þ
1 ,X kð Þ

2 , :::, constitutes independent and identically distributed (i.i.d.) data.
However, we stress that this independence assumption is limited to within each stream

so that, for example, elements of X kð Þ
1 ,X kð Þ

2 , :::, may be correlated with (or even identical

to) elements of another stream X k0ð Þ
1 ,X k0ð Þ

2 , ::::

Formally we represent the simple null and alternative hypotheses H kð Þ and G kð Þ by
the corresponding distinct density functions h kð Þ (null) and g kð Þ (alternative) with

respect to some common r-finite measure l kð Þ: The parameter space H kð Þ corre-

sponding to this data stream is the set of all densities f with respect to l kð Þ, and H kð Þ

is considered true if the actual density f kð Þ satisfies f kð Þ ¼ h kð Þ l kð Þ a.s. and is false if

f kð Þ ¼ g kð Þ l kð Þ a.s. The SPRT for testing H kð Þ : f kð Þ ¼ h kð Þ vs. G kð Þ : f kð Þ ¼ g kð Þ with type
I and II error probabilities a and b, respectively, utilizes the simple log-likelihood
ratio test statistic

K kð Þ
n ¼

Xn
j¼1

log
g kð Þ X kð Þ

j

� �
h kð Þ X kð Þ

j

� �
0
B@

1
CA (5.1)

and samples sequentially until K kð Þ
n 62 A,Bð Þ, where the critical values A, B satisfy

Ph kð Þ K kð Þ
n � B some n, K kð Þ

n0 > A all n0 < n
� �

� a (5.2)
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Pg kð Þ K kð Þ
n � A some n, K kð Þ

n0 < B all n0 < n
� �

� b: (5.3)

The most simple and widely used method for finding A and B is to use the closed-form
Wald approximations A ¼ AW a, bð Þ and B ¼ BW a, bð Þ, where

AW a, bð Þ ¼ log
b

1� a

� �
þ q, BW a, bð Þ ¼ log

1� b
a

� �
� q (5.4)

for a, b 2 0, 1ð Þ such that aþ b � 1 and a fixed q � 0: The quantity q is an adjustment
to the boundaries to account for continuous test statistics whose excess over the bound-
ary upon stopping may be smaller than discrete statistics. See Hoel et al. (1971, section
3.3.1) for a derivation of Wald’s (1947) original q¼ 0 case and, based on Brownian
motion approximations, Siegmund (1985, p. 50 and ch. X) derives the value q ¼ 0:583,
which has been used to improve the approximation for continuous random variables.
With our multiple testing procedure we recommend using Siegmund’s q ¼ 0:583 for
continuous test statistics and q¼ 0 for discrete statistics.
Although, in general, the inequalities in (5.2)–(5.3) only hold approximately when using

the Wald approximations A ¼ AW a, bð Þ and B ¼ BW a, bð Þ, Hoel et al. (1971) show that
the actual type I and II error probabilities can only exceed a or b by a negligibly small
amount in the worst case, and the difference approaches 0 for small a and b, which is rele-
vant in the present multiple testing situation where we will utilize fractions of a and b.

Next we use the Wald approximations to construct closed-form critical values A kð Þ
s , B kð Þ

s

satisfying (3.3)–(3.4). The simulations performed in Section 6 show that this approximation
does not lead to any exceedances of the desired FDR and FNR bounds even in the case of
highly correlated data streams. Alternative approaches would be to use a software package
or Monte Carlo or to replace (5.4) by log b and � log a, respectively, for which (5.2)–(5.3)
always hold (see Hoel et al., 1971) and proceed similarly. The next theorem, proved in the
Appendix, gives simple, closed-form critical values (5.5) that can be used in lieu of these

other methods to calculate the 2K critical values A kð Þ
s ,B kð Þ

s

n o
s2½K� for a given data stream

with simple hypotheses H kð Þ,G kð Þ in the sequential BH procedure. Specifically, we show
that when using (5.5), the left-hand sides of (3.3)–(3.4) equal the same quantities one would
get using Wald’s approximations with sa=K and sb=K in place of a and b; hence, the
inequalities in (3.3)–(3.4) hold up to Wald’s approximation.

Theorem 5.1. Fix a, b 2 0, 1ð Þ such that aþ b � 1. Suppose that, for a certain data stream

k, the associated hypotheses H kð Þ : f kð Þ ¼ h kð Þ and G kð Þ : f kð Þ ¼ g kð Þ are simple. For a, b 2
0, 1ð Þ such that aþ b � 1, let a kð Þ

W a, bð Þ and b kð Þ
W a, bð Þ be the values of the probabilities on

the left-hand sides of (5.2) and (5.3), respectively, when K kð Þ
n is given by (5.1) and A ¼

AW a, bð Þ and B ¼ BW a, bð Þ are given by the Wald approximations (5.4). For s 2 ½K� define

as ¼ a K � sbð Þ
K K � bð Þ , bs ¼

b K � sað Þ
K K � að Þ :

Finally, for k 2 ½K�, let a kð Þ
BH, s and b kð Þ

BH, s denote the left-hand sides of (3.3) and (3.4),

respectively, with A kð Þ
s , B kð Þ

s given by
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A kð Þ
s ¼ log

sb
1� asð ÞK

� �
þ q, B kð Þ

s ¼ log
1� bsð ÞK

sa

� �
� q: (5.5)

Then, for all s 2 ½K�,
sa=K þ bs � 1, as þ sb=K � 1, (5.6)

a kð Þ
BH, s ¼ a kð Þ

W sa=K, bsð Þ, and b kð Þ
BH, s ¼ b kð Þ

W as, sb=Kð Þ, (5.7)

and therefore (3.3)–(3.4) hold, up to Wald’s approximation when using the critical val-
ues (5.5).

5.1.1. Example: Exponential families
Suppose that a certain data stream k is composed of i.i.d. d-dimensional random vectors

X kð Þ
1 ,X kð Þ

2 , :::, from a multiparameter exponential family of densities

X kð Þ
n 
 fh kð Þ xð Þ ¼ exp h ið ÞTx� w kð Þ h kð Þ� �h i

, n ¼ 1, 2, :::, (5.8)

where h kð Þ and x are d-vectors, �ð ÞT denotes transpose, w : Rd ! R is the cumulant gen-
erating function, and it is desired to test

H kð Þ : h kð Þ ¼ g vs:G kð Þ : h kð Þ ¼ c (5.9)

for given g, c 2 R
d: Letting S kð Þ

n ¼Pn
j¼1 X

kð Þ
j , the log-likelihood ratio (5.1) in this case is

K kð Þ
n ¼ c� gð ÞTS kð Þ

n � n w kð Þ cð Þ � w kð Þ gð Þ
h i

(5.10)

and, by Theorem 5.1, the critical values (5.5) can be used and satisfy (3.3)–(3.4) up to
Wald’s approximation.
As mentioned above, many more complicated testing situations reduce to this setting.

For example, to test the hypotheses p kð Þ � p0 vs. p kð Þ � p1 about the the success prob-

ability p kð Þ of Bernoulli trials and given values p0 < p1, one may wish to instead test

H kð Þ : p kð Þ ¼ p0 vs. G kð Þ : p kð Þ ¼ p1 by considering the worst-case error probabilities of
the original hypotheses; such simplifications are, of course, routine in practice. For this
case, the exponential family (5.8) and hypotheses (5.9) are given by

h kð Þ ¼ log p kð Þ
.

1� p kð Þ
� �� 


(5.11)

w kð Þ h kð Þ� �
¼ log 1þ exp h kð Þ� �h i

(5.12)

g ¼ log p0= 1� p0ð Þ� 	
(5.13)

c ¼ log p1= 1� p1ð Þ� 	
: (5.14)

A simulation study of the proposed procedure’s performance in this setting is presented
in Section 6.1.
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5.2. Other composite hypotheses

Though many composite hypotheses can be reduced to the simple-vs.-simple situation in
Section 5.1, the generality of Theorem 3.1 (and Theorem 4.1 for the rejective version) does
not require this and allows any type of hypothesis to be tested as long as the corresponding
sequential statistics satisfy (3.3)–(3.4) (or 4.1 in the rejective case). In this section we discuss
the more general case of how to proceed to apply Theorem 3.1 when a certain data stream
k is described by a multiparameter exponential family (5.8) but simple hypotheses are not
appropriate; Theorem 4.1 and the rejective setting are discussed further below.
Letting r denote the gradient, let

I h kð Þ, k kð Þ� �
¼ h kð Þ � k kð Þ� �Trw kð Þ h kð Þ� �

� w kð Þ h kð Þ� �
� w kð Þ k kð Þ� �h i

denote the Kullback-Leibler information number for the distribution (5.8), and suppose
it is desired to test

H kð Þ : u h kð Þ� �
� u0 vs: G kð Þ : u h kð Þ� �

� u1, (5.15)

where u �ð Þ is some continuously differentiable real-valued function such that

for all fixed h kð Þ, I h kð Þ, k kð Þ� �
is

decreasing
increasing

� �
in u k kð Þ� � <

>

� �
u h kð Þ� �

, (5.16)

and u0 < u1 are chosen real numbers. In other words, (5.16) says that for any k kð Þ, ~k
kð Þ

such that u h kð Þ� �
< u k kð Þ� �

� u ~k
kð Þ

� �
we have I h kð Þ, k kð Þ� �

� I h kð Þ, ~k
kð Þ

� �
and a similar

statement with all inequalities reversed. The family of models (5.8) and general form (5.15)
of the hypotheses contain a large number of situations frequently encountered in practice,
including various two-population (or more) comparison tests and testing problems with
nuisance parameters. For example, the sequential Student’s t-test problem mentioned in
Section 2 is a special case of this setup; details are given in the next section.
The hypotheses (5.15) can be tested with the flexible and powerful sequential general-

ized likelihood ratio (GLR) statistics. Letting

ĥ
kð Þ
n ¼ rw kð Þ

� ��1 1
n

Xn
j¼1

X kð Þ
j

 !

denote the maximum likelihood estimate of h based on the data from the first n obser-
vations, define

K kð Þ
H, n ¼ n inf

k:u kð Þ¼u0
I ĥ

kð Þ
n , k

� �� 

,

(5.17)

K kð Þ
G, n ¼ n inf

k:u kð Þ¼u1
I ĥ

kð Þ
n , k

� �� 

,

(5.18)

K kð Þ
n ¼

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nK kð Þ

H, n

q
, if u ĥ

kð Þ
n

� �
> u0 and K kð Þ

H, n � K kð Þ
G, n

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nK kð Þ

G, n

q
, otherwise:

8><
>: (5.19)
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The statistics (5.17) and (5.18) are the log-GLR statistics for testing against H kð Þ and

against G kð Þ, respectively. To find the critical values that satisfy (3.3) and (3.4), Monte
Carlo simulation or software packages for sequential (or group sequential) sampling of
Gaussian data utilizing the large-n limiting distribution of the signed roots of

(5.17)–(5.18) in (5.19) under u h kð Þ� �
¼ u0 and u1, respectively, can be used; see

Jennison and Turnbull (1997, theorem 2).
Another commonly encountered testing situation is testing the simple null hypotheses

versus the composite alternative

H kð Þ : h kð Þ ¼ h kð Þ
0 vs: G kð Þ : h kð Þ 6¼ h kð Þ

0 (5.20)

for a give value h kð Þ
0 2 R

d: However, by considering true values of h kð Þ arbitrarily close

to h kð Þ
0 , it is clear that no test of (5.20) can control the type II error probability for all

h kð Þ 2 G kð Þ in general, hence it may not be possible to find a test satisfying (3.4). If
“early stopping” under the null hypothesis is not a priority, then the rejective sequen-
tial BH procedure in Section 4 can be used with the GLR statistic (5.17), as discussed
above. On the other hand, in order to use the sequential BH version that allows early

stopping under the null as well, one may need to restrict G kð Þ in some way for that to

be possible; for example, by modifying G kð Þ to be only the h kð Þ such that jjh kð Þ �
h kð Þ
0 jj � d for some smooth norm jj � jj (such as l2 norm) and value d > 0: This

restricted form is a special case of the framework (5.15) by choosing u h kð Þ� �
¼

jjh kð Þ � h kð Þ
0 jj, u0 ¼ 0, and u1 ¼ d:

5.3. Example revisited: Multiple-endpoint clinical trials

In this section we discuss how to implement the two component hypothesis tests given
as examples of endpoints in Section 2 for multiple-endpoint clinical trials.

The example of testing H kð Þ : p � p0 vs. G kð Þ : p � p1 > p0 about the success prob-

ability p of i.i.d, Bernoulli data X kð Þ
1 ,X kð Þ

2 , :::, was discussed in Section 5.1.1 where the
monotone likelihood ratio allowed reduction to simple hypotheses and thus the
closed-form expressions (5.5) can be used for the critical values. A simulation study
of the sequential BH procedure’s performance on data streams of this type is pre-
sented in Section 6.1.
For testing

H kð Þ : l � 0 vs: G kð Þ : l � d > 0

about the mean l of i.i.d. normal data X kð Þ
1 ,X kð Þ

2 , :::, with unknown variance r2, the
same immediate reduction to simple hypotheses is not possible because of the nuisance
parameter r2; however, the sequential GLR statistics in Section 5.2 can handle this situ-
ation. The statistics (5.17)–(5.19) are
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K kð Þ
H, n ¼ n=2ð Þ log 1þ X

kð Þ
n

r̂n

 !2
2
4

3
5
, K kð Þ

G, n ¼ n=2ð Þ log 1þ X
kð Þ
n � d
r̂n

 !2
2
4

3
5
,

and K kð Þ
n ¼

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nK kð Þ

H, n

q
, if X

kð Þ
n � d=2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nK kð Þ

G, n

q
, otherwise,

8><
>:

(5.21)

where X
kð Þ
n and r̂2

n are the usual maximum likelihood estimates of l and r2, respect-

ively, based on X kð Þ
1 , :::,X kð Þ

n (see Bartroff, 2006, p. 106). In order to compute the critical

values A kð Þ
s ,B kð Þ

s

n o
s2½K� satisfying (3.3)–(3.4) for (5.21), Bartroff and Song (2014,

lemma 3.1) showed that, in this case, the left-hand sides of (3.3) and (3.4) are bounded
above by

P tn � bn, s some n, tn0 > an0, 1 all n0 < n
� �

and P tn � an, s some n, tn0 < bn0 , 1 all n0 < n
� �

,

(5.22)

respectively, where

an, s ¼ � n� 1ð Þ exp A kð Þ
s =n

� �2
 �
� 1

� �
 �1=2

,
bn, s ¼ n� 1ð Þ exp B kð Þ

s =n
� �2
 �

� 1

� �
 �1=2

,

and tn ¼ Zn

,
1

n n� 1ð Þ
Xn
i¼1

Zi � Zn

� �2( )1=2

(5.23)

in which Z1, :::,Zn are i.i.d. standard normal random variables. Thus, tn has the
Student’s t distribution with n – 1 degrees of freedom. Using (5.22), critical values
satisfying (3.3) and (3.4) can be computed using recursive numerical integration, and
this is the standard method used in this setting by the many sequential and group
sequential software packages that exist; see Jennison and Turnbull (2000, ch. 19) and
Bartroff et al. (2013, ch. 4.3). Alternatively, Monte Carlo can be used in which all
that is needed is the generation of the i.i.d. standard normal random variables Zi

in (5.23).
In some applications it may be desired to test a composite null hypothesis versus a sim-

ple alternative hypothesis, and thus control the FNR at a particular value of the unknown
parameter. For example, in the current sequential Student’s t-test setting, suppose it is

desired to test the composite null H kð Þ : l � 0 versus the simple alternative G kð Þ : l, rð Þ ¼
d, r1ð Þ, for given values d > 0, r1 > 0: By arguments similar to those in the proof of
Bartroff and Song (2014, lemma 3.1), it can be shown that for the test statistic (5.21), the
error probabilities (3.3) and (3.4) are bounded above by the terms in (5.22), but with the
an, s and bn0 , 1 in the second term in (5.22) replaced by

~an, s ¼ min an, s, � d
ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p

2r1

( )
and ~bn0, 1 ¼ bn0 , 1 � d

ffiffiffiffiffiffiffiffiffiffiffiffi
n0 � 1

p

2r1
,
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respectively. Using these formulas, the critical values can be computed using only the
standard normal distribution by either recursive numerical integration or Monte Carlo,
as described in the previous paragraph.

6. Simulation studies

In this section we present simulation studies comparing the sequential BH procedure
(denoted SBH throughout this section) to the fixed sample BH procedure (denoted FBH)
defined in Section 3.1. We note that there are no existing sequential competitors of SBH
with which to compare. Although the traditional BH procedure could be applied to K arbi-
trary level-a sequential tests performed independent of each other, the resulting procedure
would not control the FNR, nor would it likely be very efficient because the stopping rules
of the individual tests would not take the other data streams into account.
In Section 6.1 we compare SBH with FBH in the context of Bernoulli data streams,

the setup discussed at the end of Section 5.1.1, and in Section 6.2 we consider normal
data streams and embed the streams in a multivariate normal distribution in order to
simulate various between-stream correlation structures. Both studies use the values a ¼
0:05 and b ¼ 0:2 as the prescribed FDR and FNR bounds, respectively. This same value
of a is used for the FBH procedure and, because the resulting procedure does not guar-
antee FNR control at a prescribed level, in order to compare “apples with apples” we
have varied its fixed sample size in order to make its achieved value of FNR approxi-
mately match that of the SBH procedure. For each scenario considered below, we esti-
mate FDR; FNR; their upper bounds K0a=K and K1b=K under independence in (3.13)

and (3.14), respectively; the expected total sample size EN ¼ E
PK

k¼1 N
kð Þ

� �
over all of

the data streams where N kð Þ is the total sample size of the kth stream; and relative sav-
ings in sample size of SBH relative to FBH using 100,000 Monte Carlo simulated bat-
teries of K sequential tests. Finally, we note that these two simulation studies have the
property that each data stream and corresponding hypothesis test has the same struc-
ture; we emphasize that this is only for the sake of getting a clear picture of the proce-
dures’ performance and this property is not required of the SBH that allows arbitrary
“mixing” of data stream distributions and types of hypotheses.

6.1. Independent Bernoulli data streams

Table 1 contains the operating characteristics of SBH and FBH for testing K hypotheses
of the form

H kð Þ : p kð Þ � :4 vs: G kð Þ : p kð Þ � :6, k ¼ 1, :::,K, (6.1)

about the probability p kð Þ of success in the kth stream of i.i.d. Bernoulli data, which, for
the sake of illustration, were generated independent of each other; a situation with
between-stream dependence is considered in the next section. Standard errors (denoted
SE) are given in parentheses. For the SBH procedure, the sequential log likelihood ratio
test statistic (5.10)–(5.14) was used for each stream with the Wald approximation crit-

ical values (5.5) with q¼ 0. For FBH, whose sample size N kð Þ for each stream k is fixed,
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p-values were computed in the standard way as 1� FN kð Þ , :4 S kð Þ
N kð Þ � 1

� �
, where Fn, p �ð Þ is

the cumulative distribution function of the binomial distribution with n trials and prob-

ability p of success, and S kð Þ
N kð Þ is the sum of the N kð Þ observations from stream k. The

data were generated for each data stream with p kð Þ ¼ 0:4 or 0.6, and the second column
of Table 1 gives the number K0 of true null hypotheses—that is, those for which

p kð Þ ¼ 0:4—and K1 ¼ K � K0 is the number of false null hypotheses. The final column,
labeled “Savings,” gives the percentage decrease in expected total sample size EN of
SBH relative to FBH. Note that no standard error is given for the expected sample size
of FBH because it is fixed.
The SBH procedure gives a sizable reduction in expected sample size relative to FBH

procedure, at least roughly 40% in all scenarios and more than 50% savings in some.
Turning our attention to FDR and FNR, note that both procedures routinely have
achieved values of FDR and FNR not only less than the prescribed levels a ¼ 0:05 and
b ¼ 0:2 but also well below the bounds K0a=K and K1b=K, respectively. The sample
size savings of SBH seems to grow with both the number K of hypotheses and the num-
ber K0 of true null hypotheses.
An important consideration when choosing any statistical test, whether sequential or

fixed sample, of hypotheses like (6.1) is its performance when p kð Þ lies in the
“indifference region” between p0 and p1. Although FDR and FNR are not defined in

Table 1. Operating characteristics of sequential (SBH) and fixed-sample (FBH) BH procedures for test-
ing the hypotheses (6.1) about the success probabilities of i.i.d. Bernoulli data streams.
K K0 Procedure FDR (SE) K0a=K FNR (SE) K1b=K EN (SE) Savings (%)

2 2 SBH 0.0314 (0.0063) 0.050 0 (0) 0 50.8 (1.9)
FBH 0.0315 (0.0064) 0 (0) 105 51.62

1 SBH 0.0157 (0.0030) 0.025 0.0772 (0.0059) 0.100 61.9 (1.0)
FBH 0.0212 (0.0031) 0.0860 (0.0065) 120 48.42

0� SBH 0 (0) 0 0 (0) 0 273.1 (1.5)
5 5 SBH 0.0264 (0.0035) 0.050 0 (0) 0 166.5 (2.5)

FBH 0.0238 (0.0034) 0 (0) 360 53.75
3 SBH 0.0170 (0.0023) 0.030 0.0412 (0.0027) 0.080 193.7 (1.9)

FBH 0.0198 (0.0025) 0.0430 (0.0030) 370 47.65
2 SBH 0.0115 (0.0017) 0.020 0.0628 (0.0044) 0.120 207.2 (1.8)

FBH 0.0188 (0.0020) 0.0629 (0.0044) 375 44.75
0� SBH 0 (0) 0 0 (0) 0 767.1 (1.5)

10 10 SBH 0.0252 (0.0032) 0.050 0 (0) 0 338.0 (3.1)
FBH 0.0285 (0.0042) 0 (0) 765 55.82

8 SBH 0.0195 (0.0026) 0.040 0.0201 (0.0015) 0.040 364.5 (3.3)
FBH 0.0291 (0.0034) 0.0280 (0.0018) 760 52.04

5 SBH 0.0114 (0.0014) 0.025 0.0512 (0.0028) 0.100 430.3 (3.1)
FBH 0.0191 (0.0016) 0.0533 (0.0030) 770 44.12

2 SBH 0.0048 (0.0007) 0.010 0.1015 (0.0046) 0.160 462.1 (3.2)
FBH 0.0085 (0.0009) 0.1037 (0.0057) 770 39.99

0� SBH 0 (0) 0 0 (0) 0 1,541.7 (3.2)
20 20 SBH 0.0228 (0.0023) 0.050 0 (0) 0 703.3 (4.4)

FBH 0.0206 (0.0021) 0 (0) 1650 57.38
16 SBH 0.0183 (0.0019) 0.040 0.0191 (0.0010) 0.040 763.5 (4.2)

FBH 0.0274 (0.0027) 0.0204 (0.0010) 1760 56.62
10 SBH 0.0114 (0.0010) 0.025 0.0493 (0.0021) 0.100 891.9 (5.0)

FBH 0.0208 (0.0013) 0.0544 (0.0021) 1640 45.62
4 SBH 0.0047 (0.0005) 0.010 0.0854 (0.0039) 0.160 964.7 (4.5)

FBH 0.0074 (0.0007) 0.0945 (0.0040) 1700 43.25
0� SBH 0 (0) 0 0 (0) 0 2,141.2 (4.6)
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this case, we recommend still considering other operating characteristics such as
expected sample size for these values of the parameters. For example, in the setting of

Table 1, if p kð Þ ¼ 0:5 for all K¼ 10 streams, then the expected sample size EN of the
SBH procedure is 640.9, with a standard error of 2.3, based on 100,000 Monte Carlo
replications. Because FDR and FNR are not defined in this case, there is no natural way
to match error rates to compare with a fixed-sample-size procedure. However, this value
of SBH’s EN is substantially smaller than FBH’s EN even in the more favorable scen-

arios (i.e., with all p kð Þ outside the indifference region) for the latter in the K¼ 10 cases
of Table 1, in which EN ¼ 760, 770, and 770, respectively.

6.2. Correlated normal data streams

Table 2 contains the operating characteristics of SBH and FBH for testing the
hypotheses

H kð Þ : h kð Þ � 0 vs: G kð Þ : h kð Þ � d, k ¼ 1, :::,K, (6.2)

about the mean h kð Þ of the kth stream of normal observations with variance 1 and

where d¼ 1. As discussed in Section 5.2, this alternative hypothesis G kð Þ can be thought

of as a surrogate for the alternative hypothesis h kð Þ
> 0: In order to generate K normal

data streams under various correlation structures, the K streams were generated as com-

ponents of a K-dimensional multivariate normal distribution with mean h ¼
h 1ð Þ, :::, h Kð Þ� �

, given in the second column of Table 2, and various non-identity covari-
ance matrices Mi, given in the Appendix. These covariance matrices provide a variety of
different scenarios with positively and/or negatively correlated data streams. The Wald

Table 2. Operating characteristics of sequential (SBH) and fixed-sample (FBH) BH procedures for test-
ing (6.2) about the means of correlated normal data streams.
Covariance True h Procedure FDR (SE) K0a=K Da FNR (SE) K1b=K EN Savings (%)

M1 (1, 0) SBH 0.0249 (0.0035) 0.025 0.075 0.0983 (0.0065) 0.100 9.6 (0.1)
FBH 0.0248 (0.0033) 0.0970 (0.0075) 16 35.63

M1 (1, 0) SBH 0.0228 (0.0047) 0.025 0.075 0.0676 (0.0062) 0.100 10.5 (0.2)
FBH 0.0293 (0.0043) 0.0626 (0.0053) 20 47.50

M3 ð1, 0, 1, 0Þ SBH 0.0212 (0.0030) 0.025 0.104 0.0767 (0.0045) 0.100 24.0 (0.2)
FBH 0.0264 (0.0034) 0.0800 (0.0051) 40 40.00

ð1, 1, 0, 0Þ SBH 0.0163 (0.0036) 0.025 0.104 0.0524 (0.0053) 0.100 24.1 (0.4)
FBH 0.0249 (0.0042) 0.0578 (0.0053) 44 45.23

M4 ð1, 0, 0, 0, 0, 0Þ SBH 0.0302 (0.0047) 0.042 0.123 0.0213 (0.0016) 0.033 31.3 (0.3)
FBH 0.0379 (0.0043) 0.0236 (0.0017) 72 56.53

ð1, 0, 0, 1, 0, 0Þ SBH 0.0251 (0.0034) 0.033 0.123 0.0476 (0.0027) 0.067 34.9 (0.3)
FBH 0.0324 (0.0037) 0.0483 (0.0029) 66 47.12

ð1, 1, 0, 0, 0, 0Þ SBH 0.0225 (0.0038) 0.033 0.123 0.0378 (0.0034) 0.067 35.1 (0.5)
FBH 0.0319 (0.0039) 0.0370 (0.0036) 72 51.25

ð1, 1, 1, 0, 0, 0Þ SBH 0.0142 (0.0032) 0.025 0.123 0.0478 (0.0044) 0.100 38.3 (0.6)
FBH 0.0250 (0.0038) 0.0490 (0.0048) 72 46.81

ð1, 1, 0, 1, 1, 0Þ SBH 0.0137 (0.0019) 0.017 0.123 0.0952 (0.0061) 0.133 39.8 (0.4)
FBH 0.0181 (0.0021) 0.0879 (0.0061) 66 39.70

ð1, 1, 1, 1, 0, 0Þ SBH 0.0113 (0.0025) 0.017 0.123 0.0826 (0.0057) 0.133 40.2 (0.5)
FBH 0.0175 (0.0027) 0.0884 (0.0052) 66 39.09

ð1, 1, 1, 1, 1, 0Þ SBH 0.0069 (0.0014) 0.008 0.123 0.1174 (0.0091) 0.167 41.1 (0.4)
FBH 0.0095 (0.0016) 0.1226 (0.0081) 66 37.73
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approximation critical values (5.5) were used with the continuity correction q ¼ 0:583
suggested by Siegmund (1985, p. 50 and ch. X). The other columns have the same
meaning as in Table 1. The p-values for FBH were computed in the standard way as

1� U S kð Þ
N kð Þ=

ffiffiffiffiffiffiffiffiffi
N kð Þp� �

, where U is the cumulative distribution function of the standard

normal distribution and S kð Þ
N kð Þ is the sum of the N kð Þ observations from stream k.

Despite the correlations present between different data streams, the interaction of
these various combinations of correlations with various true or false null hypotheses all
show behavior somewhat similar to the case of independent data streams in the previ-
ous section in that SBH has sizably smaller expected sample size than FBH in all cases,
roughly a 40% reduction in most cases. Though the independent case of Theorem 3.1
no longer applies because of the dependence, we note that in each scenario the achieved
FDR and FNR rates are all less than K0a=K and K1b=K in (3.13) and (3.14),
respectively.

7. Discussion

We have proposed a flexible procedure to combine basic sequential hypothesis tests into
an FDR-and FNR-controlling multiple testing procedure tailored to sequential data. The
error control in Theorems 3.1 and 4.1 is proved under arbitrary dependence with a
small logarithmic inflation D of the prescribed levels a and b that may be dispensed
with under independence. These were the same conditions under which Benjamini and
Hochberg (1995) proved FDR control in their original paper and, as mentioned in the
Introduction, recent work by Benjamini and Yekutieli (2001) has broadened this from
independence to positive regression dependence. We fully expect to be able to similarly
extend the conditions under which (uninflated) FDR control holds in the sequential
domain too, but the distributional complications introduced by sequential sampling pre-
sent additional challenges. Our conjecture is supported by the simulation studies in
Section 6.2 and other simulation studies we have performed under strong positive
dependence, in which not a single instance of achieved FDR or FNR has exceeded the
uninflated levels K0a=K and K1a=K of the independent case. Moreover, the setting of
Section 6.2 in which dependence exists between data streams but it may be impossible
for the statistician to know or model a priori is a prime example of where the proposed
procedure may be useful since FDR and FNR can still be controlled by only knowing
something about the marginal distributions of the test statistics through (3.3)–(3.4). The
results of this section are encouraging that a sequential analog of Storey and
Tibshirani’s (2003) argument that the BH procedure controls FDR asymptotically as
K ! 1 under arbitrary dependence will hold as well.
The simultaneous control of FDR and FNR achievable by the sequential BH

procedure is a by-product of the sequential setting and is analogous to the situation in
classical single hypothesis testing where there exist sequential tests simultaneously con-
trolling both type I and II error probabilities at arbitrary levels (Stein, 1945), a feat that
is impossible in general for fixed-sample-size tests (Dantzig, 1940). Also analogous to
the classical setting, it may be that the statistician has a well-motivated value of the
FDR bound a in mind but not necessarily a value of the FNR bound b (or the value u1
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in the composite alternative 5.15). In this case, the rejective version of the sequential
BH procedure in Section 4 may be used, which only stops early to reject null hypothe-
ses; that is, when the data indicates that an alternative hypothesis is true. If substantial
early stopping is also desired when null hypotheses are true, then we encourage the stat-
istician to utilize the sequential BH procedure and to treat b as a parameter that may
be chosen to give a procedure with other desirable operating characteristics, such as
expected total or streamwise maximum sample size.
In addition to the widely available software packages for computing group sequential

critical values and the formulas (5.5) that can both be used to compute the 2K2 critical

values A kð Þ
s ,B kð Þ

s

n o
s, k2½K� of the individual sequential tests satisfying (3.3)–(3.4), we men-

tioned Monte Carlo as an alternative. Although 2K2 critical values are needed in gen-
eral, raising the specter of 2K2 different simulations studies, there are features of the
problem making the actual number much smaller and indicating that it is somewhat
immune to the curse of dimensionality in many cases, which afflicts many problems in
high-dimensional statistics. For simplicity let us focus on the rejective version of the
sequential BH procedure in Section 4; however, similar statements apply to the general

version. In the rejective version, the K2 critical values B kð Þ
s

n o
s, k2½K� satisfying (4.1) are

needed in general. However, in settings like the simulation studies in Section 6 where
multiple data streams utilize test statistics of the same form, the actual number may be
much smaller; for examle, K if all tests are of the same form. Moreover, because of the
nested nature of the error probabilities (4.1), these K values can be simulated in a single
Monte Carlo study by letting Bs be the upper sa=Kð Þ quantile of the simulated empirical
distribution of the statistic max1�n�NKn:

Appendix: Proofs and details of simulation studies

Proof of Theorem 3.1. Fix h 2 H and omit it from the notation. First we prove (3.11) and
(3.13). Without loss of generality, let H 1ð Þ, :::,H K0ð Þ denote the true null hypotheses, some 1 �
K0 � K: For k 2 ½K0� and s 2 ½K� define the events

Wk, s ¼ ~K
kð Þ
n � K � sþ 1 some n, ~K

kð Þ
n0 > �K all n0 < n

n o
and, by (3.5) and (3.3), we have

P Wk, sð Þ ¼ P K kð Þ
n � B kð Þ

s some n, K kð Þ
n0 > A kð Þ

1 all n0 < n
� �

� sa=K: (A.1)

For v 2 ½K0� and t 2 0, :::,K � K0f g, let
Xv ¼ x � K0½ � : jxj ¼ v

� �
,

Vx
v, t ¼ H kð Þ, k 2 x, and t false hypotheses rejected

n o
for x 2 Xv, and

Vv, t ¼ [
x2Xv

Vx
v, t ¼ v true and t false hypotheses rejectedf g,

and note that this union is disjoint.
We begin by showing that

P Wk, vþt \ Vx
v, t

� � � 1 k 2 xf gP Vx
v, t

� �
, (A.2)
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which is trivial for k 62 x: To show that (A.2) holds for k 2 x, we will show that Vx
v, t � Wk, vþt

in this case. Consider any outcome in Vx
v, t: Because H kð Þ is rejected on this outcome, let j denote

the stage at which H kð Þ is rejected. By the definition of step 2b of the procedure, k ¼ i nj, ‘
� �

for
some ‘ � jI jj �m0

j þ 1, so

~K
kð Þ
nj ¼ ~K

i nj , ‘ð Þð Þ
nj � ~K

i nj , jI jj�m0
jþ1ð Þð Þ

nj � K � rj þm0
j

� �
þ 1, (A.3)

this last inequality by (3.10). Because rj þm0
j ¼ rjþ1 and this value is no greater than the total

number v þ t of null hypotheses rejected on Vx
v, t , (A.3) gives

~K
kð Þ
nj � K � vþ tð Þ þ 1: (A.4)

Now suppose toward contradiction that ~K
kð Þ
n0 � �K for some n0 < nj: Then, by (3.7), H kð Þ would

have been accepted at some stage j0 prior to j because

~K
kð Þ
n0 � �K � � K � aj0 � ‘þ 1

� �
for any possible value of aj0 � 0 and any ‘ � 1, contradicting the assumption that H kð Þ is rejected

at stage j. Thus, it must be that ~K
kð Þ
n0 > �K for all n0 < nj, and combining this with (A.4) shows

that this outcome is in Wk, vþt , finishing the proof of (A.2).
With (A.2) established, we now follow the argument of Benjamini and Yekutieli (2001, section

4) more directly with a few modifications.

XK0

k¼1

P Wk, vþt \ Vv, tð Þ ¼
XK0

k¼1

X
x2Xv

P Wk, vþt \ Vx
v, t

� � �XK0

k¼1

X
x2Xv

1 k 2 xf gP Vx
v, t

� �

¼
X
x2Xv

XK0

k¼1

1 k 2 xf gP Vx
v, t

� � ¼ X
x2Xv

jxjP Vx
v, t

� � ¼ vP Vv, tð Þ:
(A.5)

Using this and the definition of FDR,

FDR ¼
XK�K0

t¼0

XK0

v¼1

v
vþ t

P Vv, tð Þ �
XK�K0

t¼0

XK0

v¼1

v
vþ t

1
v

XK0

k¼1

P Wk, vþt \ Vv, tð Þ
 !

¼
XK�K0

t¼0

XK0

v¼1

1
vþ t

XK0

k¼1

P Wk, vþt \ Vv, tð Þ:
(A.6)

Define Uv, t, k as the event in which, if H kð Þ is rejected, then v – 1 other true and t false null
hypotheses are also rejected, so that Wk, vþt \ Vv, t ¼ Wk, vþt \ Uv, t, k: Let Us, k ¼ [vþt¼s Uv, t, k and
note that, for any k, U1, k, :::,UK, k partition the sample space. Then, starting at (A.6),

FDR �
XK�K0

t¼0

XK0

v¼1

1
vþ t

XK0

k¼1

P Wk, vþt \ Uv, t, kð Þ ¼
XK0

k¼1

XK
s¼1

1
s
P Wk, s \ Us, kð Þ: (A.7)

With the convention Wk, 0 ¼ ;, define

pk, ‘, s ¼ P Wk, ‘ nWk, ‘�1ð Þ \ Us, kð Þ for k 2 K0½ �, ‘ 2 s½ �, s 2 K½ �:

Note that Wk, ‘�1 � Wk, ‘, so Wk, s ¼ [s
‘¼1 Wk, ‘ nWk, ‘�1ð Þ and this union is disjoint. Writing Wk, s

in this way in (A.7), we have
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FDR �
XK0

k¼1

XK
s¼1

1
s

Xs
‘¼1

pk, ‘, s �
XK0

k¼1

XK
s¼1

Xs
‘¼1

pk, ‘, s
‘

�
XK0

k¼1

XK
s¼1

XK
‘¼1

pk, ‘, s
‘

¼
XK0

k¼1

XK
‘¼1

1
‘

XK
s¼1

pk, ‘, s

¼
XK0

k¼1

XK
‘¼1

1
‘
P Wk, ‘ nWk, ‘�1ð Þ ¼

XK0

k¼1

XK
‘¼1

1
‘
P Wk, ‘ð Þ � P Wk, ‘�1ð Þ½ �

¼
XK0

k¼1

XK
‘¼1

P Wk, ‘ð Þ
‘

�
XK�1

‘¼0

P Wk, ‘ð Þ
‘þ 1

" #

¼
XK0

k¼1

XK�1

‘¼1

P Wk, ‘ð Þ
‘ ‘þ 1ð Þ þ

P Wk,Kð Þ
K

� P Wk, 0ð Þ
" #

�
XK0

k¼1

XK�1

‘¼1

a

K ‘þ 1ð Þ þ
a
K

" #
by A:1ð Þ� �

¼
XK0

k¼1

XK
‘¼1

a
K‘

¼ D
K0

K

� �
a:

If data streams k 2 ½K0� are independent, returning to (A.7) we have

FDR �
XK0

k¼1

XK
s¼1

1
s
P Wk, sð ÞP Us, kð Þ �

XK0

k¼1

XK
s¼1

1
s

sa
K

� �
P Us, kð Þ ¼ a

K

XK0

k¼1

XK
s¼1

P Us, kð Þ ¼ a
K

XK0

k¼1

1

¼ K0

K

� �
a,

where the second equality holds because U1, k, :::,UK, k partition the sample space.
The proof of FNR control is entirely symmetric and so is omitted here. w

Proof of Theorem 5.1. We verify the first parts of (5.6) and (5.7); the second parts are verified
similarly. Using that b � 1� a and some calculus, we have

sa
K
þ bs ¼

sa
K
þ b K � sað Þ

K K � að Þ � sa
K
þ 1� að Þ K � sað Þ

K K � að Þ ¼ s
K
�
ð1
a

K � 1ð Þ s� 1ð Þ
K � að Þ2 da � s

K
� 1:

The forms of A kð Þ
s and B kð Þ

s in (5.5) can equivalently be written as AW as, sb=Kð Þ and

BW sa=K, bsð Þ, respectively, and it is simple algebra to check that AW sa=K, bsð Þ ¼ A kð Þ
1 for all s 2

½K�: Then

a kð Þ
BH, s ¼ Ph kð Þ K kð Þ

n � B kð Þ
s some n,K kð Þ

n0 > A kð Þ
1 all n0 < n

� �
¼ Ph kð Þ K kð Þ

n � BW sa=K, bsð Þ some n, K kð Þ
n0 > AW sa=K, bsð Þ all n0 < n

� �
¼ a kð Þ

W sa=K, bsð Þ,

by definition of a kð Þ
W : w

Details of Simulation Studies
The four covariance matrices used in the simulations in Section 6.2 are as follows:

M1 ¼
1 0:8

0:8 1

 !

M2 ¼
1 �0:8

�0:8 1

 !
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M3 ¼

1 0:8 �0:6 �0:8

0:8 1 �0:6 �0:8

�0:6 �0:6 1 0:8

�0:8 �0:8 0:8 1

0
BBBB@

1
CCCCA

M4 ¼

1 0:8 0:6 �0:4 �0:6 �0:8

0:8 1 0:8 �0:4 �0:6 �0:8

0:6 0:8 1 �0:4 �0:6 �0:8

�0:4 �0:4 �0:4 1 0:8 0:6

�0:6 �0:6 �0:6 0:8 1 0:8

�0:8 �0:8 �0:8 0:6 0:8 1

0
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