
Nearly Optimal Sequential Tests for

Exponential Families I

Gary Lorden

Abstract

Abstract The problem of testing separated hypothesis θ ≤ θ0 and θ ≥ θ1 about the
parameter θ of a one-dimensional exponential family is considered. It is shown that the
generalized sequential likelihood ratio tests (GSLRT’s) can be chosen so as to attain
the Bayes risk to within o(c) as c, the cost per observation, goes to zero. It is assumed
that the prior distribution of θ has a continuous positive (Lebesgue) density on an
interval [a, b] in the interior of the natural parameter space. The Type I and Type II
error probabilities of the GSLRT’s are evaluated asymptotically as a consequence of a
general theorem on asymptotic boundary-crossing probabilities. Sufficient conditions
for families of tests to be o(c)-Bayes are given and examples of such procedures base
on stopping risks or mixtures of likelihood ratios are given.

0 Introduction and Summary

Consider the problem of testing two separated hypotheses a ≤ θ ≤ θ0 and b ≥ θ ≥
θ1 sequentially based on independent and identically distributed random variables
X1, X2, X3, . . . whose distribution belongs to an exponential family of densities

fθ(x) = exp(θx− ψ(θ)),

with respect to a non-degenerate σ-finite measure, ν. Assume that a and b are inte-
rior points of the interval of θ’s for which exp(θx) is ν-integrable, the so-called natu-
ral parameter space. Then ψ is infinitely differentiable on [a, b], ψ′(θ) = EθX1, and
ψ′′(θ) = VarθX1, so that ψ is strictly convex.

Letting fθn = fθ(X1) · · · fθ(Xn) (fθ0 ≡ 1), it is easy to evaluate under θ,

I(θ, θ′) = Eθ log

(
fθ1
fθ′1

)
= (θ − θ′)ψ′(θ)− (ψ(θ)− ψ(θ′))

Define θ̂n ∈ [a, b] as the value of θ maximizing the likelihood, fθn, on [a, b]. A family
of generalized sequential likelihood ratio tests (GSLRT’s), one for each γ > 0, is then
defined by the following rule:

stop and reject θ ≤ θ0 if fθ0n ≤ γh0(θ̂n)f
θ̂nn

and θ̂n ≥ θ2, (1)

stop and reject θ ≥ θ1 if fθ1n ≤ γh1(θ̂n)f
θ̂nn

and θ̂n ≤ θ2,

where θ2 satisfies I(θ2, θ0) = I(θ2, θ1) and h0, h1 are positive and continuous on [θ2, b],
[a, θ2], respectively. Either hypothesis may be rejected if both sets of conditions are
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met. Theorem 2 of Section 3 establishes that as γ → 0, the probability when θ0 is true
that the GSLRT (1) rejects θ ≤ θ0 is asymptotic (assuming ν is non-lattice) to

γ
√

log γ−1
∫ b

θ2

L(θ, θ0)

I(θ, θ0)
h0(θ)

(
ψ′′(θ)

2πI(θ, θ0)

)1/2

dθ,

where L(θ, θ0) is defined in (2) Section 1. (The factor L/I is the necessary correction
for excess over the boundary, as discussed in Sections 1 and 3, and may be roughly
approximated or dispensed with in applications, as usual.) By the obvious monotonicity
of the OC curve, the above integral is in fact the asymptotic Type I error, and a similar
integral expresses the Type II error.

By a trite extension of Theorem 1 of Lorden (1972), accommodating non-constant
h0, h1, the family of GSLRT’s in (1) is seen to have an appealing optimality property
as γ → 0. Letting n(θ, γ) denote the infimum of the expected sample size at θ over all
tests whose Type I and Type II error probabilities are less than or equal to those of
the GSLRT (whose sample size is denoted by N̂(γ)),

EθN̂(γ) ≤ n(θ, γ)

(
1 +O

(
log log γ−1

log γ−1

))
simultaneously (and uniformly) for all θ in [a, b].

Besides the error probability approximations, the main purpose of the present paper
is to demonstrate the near-optimality of GSLRT’s in terms of more refined asymptotics
in a Bayes context like that of Schwarz’s (1962) study of asymptotic shapes. Assume
a cost per observation 0 < c < 1, and

(A1) A bounded non-negative loss function, W (·), vanishing on (θ0, θ1), continuous
from the left (right) at θ0 (resp. θ1), and bounded away from zero on [a, θ0] and
[θ1, b],

and

(A2) A prior density, λ0(·) (with respect to Lebesgue measure), continuous and positive
on [a, b].

(Loss functions vanishing at θ0 or θ1 can be handled, too, as discussed in the remark
following the proof of Theorem 1.)

By Theorem 1, any family of GSLRT’s defined by (1) with γ = o(
√

log c−1) attains
the Bayes integrated risk to within O(c) as c→ 0 for every loss function W satisfying
(A1) and every prior density continuous and positive on [a1, b1] ⊂ [a, b] satisfying
(a1, b1) ⊃ [θ0, θ1]. Since the Bayes risk is well-known to be of order clogc−1, this
implies an asymptotic efficiency of 1−O(1/ log c−1) in terms of integrated risk.

Theorem 1 also shows that for fixed W and λ0 one can improve these asymptotic
Bayes results from O(·) to o(·) by choosing γ = c

√
log c−1 and making the right choice

of h0 and h1,

hi(θ) =

√
2πλ0(θ)|ψ′(θ)− ψ′(θi)|

λ0(θi)W (θi)L(θ, θi)(I(θ, θi)ψ′′(θ))1/2
, i = 0, 1.

Geometrical information along the lines of Schwarz (1962) is given in Corollary 3 of
Section 2, which describes asymptotically in the plane of (n, Sn) (Sn = X1 + . . .+Xn)
the continuation region B∗(c), of a Bayes solution with respect to a prior density λ0
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satisfying (A2). In the sector where ψ′(a) < Sn/n < ψ′(b), corresponding to a < θ̂ < b,
the region B∗(c) is bounded within two regions whose boundaries differ by O(1) – and
this is improved to o(1) uniformly (i.e. pointwise convergence) in sectors of the form
ψ′(θ2)+ε < Sn/n < ψ′(b)−ε. More complicated O(1) approximations to B∗(c) outside
the sector where a < θ̂ < b are readily obtainable from the results of Sections 1 and
2, but are of limited interest for the asymptotic theory because the prior probability
of exiting from B∗(c) outside the sector goes to zero with c, as shown in the proof of
Theorem 1.

Corollary 2 of Section 2 gives sets of sufficient conditions for families of procedures
to be o(c)-Bayes under (A1) and (A2). Examples of families satisfying these conditions
are given, including procedures which stop when the stopping risk for a certain prior
(not λ0) is less than a constant times c and procedures which stop when an appropri-
ately chosen mixture of likelihood ratios is more than a constant over c log c−1. It is
interesting that these approaches to defining tests, which are seemingly quite different
from the GSLRT approach, yield tests which are essentially equivalent asymptotically:
their stopping boundaries, as well as those of the Bayes procedure and the GSLRT,
converge to the same limit within sectors excluding θ̂ = a, θ2, and b and their Type I
and Type II error probabilities have the same asymptotic expressions.

Later papers in this series will extend the theory to k-hypothesis tests and open-
ended tests, study by computer the accuracy of error probability approximations and
the efficiency of tests in the case of small samples, and develop another approach to
o(c)-Bayes tests that works for a large class of priors supported on the entire natu-
ral parameter space. The present investigation uses many of the mathematical ideas
that have been developed in the asymptotic theory of sequential analysis pioneered
by Chernoff (1959), Schwarz (1962), and Kiefer and Sacks (1963). Schwarz studied
the shape and first-order rate of growth of the Bayes continuation regions for a more
general class of priors than that in (A2), finding them to be identical with those of
simple computable procedures involving maximum likelihood (hi(θ) ≡ 1 and γ = c in
(1)). It remained for Wong (1968) to prove that these attractive procedures actually
attain the Bayes risk asymptotically. Fushimi (1965, 1967) obtained second-order ap-
proximations to the Bayes regions in special cases and Schwarz (1969) generalized his
results by obtaining to within O(1) the asymptotic expansion of the stopping risk along
any ray from the origin in the (n, Sn) plane. (Expansions like Schwarz’s are given in
the next section and are accurate to o(1) uniformly over certain sectors of the (n, Sn)
plane, as required for the proof of Theorem 1.) Both Schwarz’s and Fushimi’s results
did not establish that any improvement in the integrated risk of Schwarz’s procedures
would result from using the second-order correction and, indeed, left undetermined the
right choice of coefficient for the second-order term. The latter uncertainty was due
to the lack of any improvement in Schwarz’s approximation of B∗(c) within constant-
stopping-risk boundaries of order c and c log c−1, whose second-order approximations
differ by log log c−1. Lorden (1967), using the methods of Kiefer and Sacks (1963),
improved this constant-stopping-risk approximation in a general setting, obtaining an
upper bound M∗c. But the assumptions of that paper require separation of the in-
difference region from the hypotheses, e.g. vanishing prior density near the ends of
(θ0, θ1). Lemma 3 of Section 3 remedies this situation by establishing that (A1) and
(A2) are, indeed, sufficient for the existence of an M∗ such that a Bayes procedure
continues sampling whenever the stopping risk exceeds M∗c. The first result showing
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that Schwarz-type procedures actually attain second-order efficiency,

1−O
(

log log c−1

log c−1

)
,

was obtained by Gloria Zerdy in her thesis (1975) for the case of the normal mean with
prior density supported by the real line.

Although restricted by the assumed separation of the indifference interval from
the hypotheses, Lorden’s (1967) results showed that the Bayes risk could be attained
to within O(c) by stopping when the stopping risk is less than a constant times c,
a procedure proposed by Kiefer and Sacks. The practical difficulty in using such a
procedure is, of course, the need to compute the stopping risk at each stage. This kind
of computational difficulty can be overcome in many cases by using instead mixtures
of likelihood ratios, a method suggested by Wald and extended into the elegant theory
of open-ended tests developed by Robbins (1970) and Robbins and Siegmund (1970).
The present work makes considerable use of the methods and results of the recent
refinements of that theory (Pollak and Siegmund, 1975) and (Lai and Siegmund, 1977).
Also of importance is the “stopping problem” approach used by Bickel and Yahav
(1967, 1968, 1969) in their general theory of asymptotically pointwise optimal (A.P.O.)
sequential tests and estimators.

The present paper is an extension to a continuous parameter setting of the ideas
developed in Lorden (1977), where simple o(c)-Bayes procedures were proposed for
general problems involving only finitely many parameter values. Like that paper, the
present considerations hinge on showing that the problem of when to stop is sufficiently
well approximated asymptotically by reducing considerations to one-sided sequential
probability ratio tests (SPRT’s) of the maximum likelihood θ against the most likely
θ in a hypothesis which is close to rejection.

1 Preliminaries and asymptotics

Probability and expectation under θ will be denoted by Pθ and Eθ, respectively. The
symbols Pλ0 and Eλ0 will be similarly used for the λ0-mixture of θ-probabilities and
expectations. Let F0,F1,F2, . . . denote a sequence of sigma-fields with respect to which
all stopping rules and terminal decision rules are assumed defined. F0 is trivial and for
n ≥ 1, X1, . . . , Xn are Fn-measurable.

It will be convenient to represent the testing problem geometrically as follows.
Consider the half-plane

{(t, s)| 1 ≤ t <∞, −∞ < s <∞}

and for a given prior density, λ0, associate each point (t, s) in the half-plane with a
posterior density

λs,t(y) =
λ0(y) exp(ys− tψ(y))∫ b

a λ0(θ) exp(θs− tψ(θ))dθ

having the same support as λ0. Thus, if the first n observations have sum Sn, then
the point (n, Sn) in the (t, s) plane will be associated with λn,Sn , which is indeed the
usual posterior density. The notation λn will be used as a shorthand for λn,Sn .

It will also prove useful to define a “continuous” analog of fθn = exp(θSn−nψ(θ)),
namely

fθt = exp(θs− tψ(θ)).
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The definition of the maximum likelihood estimator is also extended to the entire (t, s)
half-plane by setting

θ̂(s, t) =


b if s > tψ′(b)

a if s < tψ′(a)

the unique solution of s = tψ′(θ), otherwise.

Assume for convenience that ψ and ψ′ vanish at θ2 and that θ2 = 0, i.e.

θ0 < 0 < θ1, ψ(0) = ψ′(0) = 0, and ψ(θ0) = ψ(θ1).

This standardization essentially involves subtracting Eθ2X from the X’s and θ2 from

the θ’s and has the convenient feature that sgn(s) = sgn(θ̂) = sgn(fθ1t/fθ0t − 1).

The maximum likelihood estimator based on Sn at time n is θ̂n = θ̂(n, Sn). Routine
computation shows that if ψ′(a) ≤ s/t ≤ ψ′(b) then

f
θ̂t

fθt
= exp(tI(θ̂, θ)) for all θ,

where θ̂ = θ̂(s, t).
Define the posterior risk of rejecting θ ≤ θ0,

Y0(s, t) =

∫ θ0
a exp(ys− tψ(y))λ0(y)W (y)dy∫ b

a exp(ys− tψ(y))λ0(y)dy
,

and the posterior risk of rejecting θ ≥ θ0,

Y1(s, t) =

∫ b
θ1

exp(ys− tψ(y))λ0(y)W (y)dy∫ b
a exp(ys− tψ(y))λ0(y)dy

.

Then the stopping risk at (s, t) is

r(λs,t) = min(Y0(s, t), Y1(s, t)).

The integrated risk of a test procedure δ having stopping time N with respect to the
prior λ0 and cost per observation 0 < c < 1 is

rc(λ0, δ) =

∫ b

a
[cEθN +W (θ)Pθ(δ makes wrong decision)]λ0(θ)dθ.

All the procedures considered in this paper may be regarded as defining continuation
regions in the (t, s) half-plane, with their complements partitioned into sets where one
or the other terminal decision is chosen. For all such procedures, the posterior risk
r(λs,t, δ) is well-defined in the entire (t, s) half-plane as the λs,t-integrated risk of the
test that begins at the point (t, s) and proceeds as indicated by the δ continuation
region and terminal decision regions.

The numbers L(θ, θ′), which play a significant role in what follows, are defined as
in Lorden (1977): for θ, θ′ belonging to the natural parameter space,

L(θ, θ′) = exp

(
−
∞∑
n=1

n−1 [Pθ(fθn ≤ fθ′n) + Pθ′(fθ′n < fθn)]

)
, (2)
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a formula which derives from the work of Spitzer (1956).
Note that, since Pθ(fθn = fθ′n) = Pθ′(fθ′n = fθn), evidently L(θ, θ′) = L(θ′, θ).

Furthermore, as shown in Lorden (1977),

0 < L(θ, θ′) ≤ min(1, I(θ, θ′)) if θ 6= θ′

and stopping at the smallest n ≥ 0 (or ∞ if there is no n) such that

vfθ′nL(θ, θ′) ≤ ufθn

minimizes

uEθN + vPθ′(N <∞) = Eθ

(
uN + v

fθ′N
fθN

)
among all extended stopping times, for arbitrary u, v > 0, a fact which is needed for
Lemma 6. Further properties of the L-numbers needed in the present context are the
following:

(i) L(θ, θ′) ↓ in θ′ for θ′ ≤ θ and ↗ in θ′ for θ′ ≥ θ.
(ii) L(θ, θ′) is continuous in each variable.

To verify these properties, let Ln(θ, θ′) denote the nth term of the series used to
define L(θ, θ′) and write (using 1{} for indicator function)

Ln(θ, θ′) = Eθ

[
1

{
fθ′n
fθn
≥ 1

}
+
fθ′n
fθn

1

{
fθ′n
fθn

< 1

}]
= Eθ exp

(
− log+

fθn
fθ′n

)
.

To verify (i) for θ′ ≤ θ, note that this last is increasing in θ′. (For θ′′ ∈ (θ′, θ),
log fθn > log fθ′′n implies log fθ′′n > log fθ′n by the concavity of the log-likelihood
function.) Property (i) for θ′ ≥ θ is verified similarly. Also, recalling that L(θ, θ′) =
L(θ′, θ), this last and the bounded convergence theorem show that property (ii) holds
with L(θ, θ′) replaced by Ln(θ, θ′). It follows that for θ 6= θ′,

lim
ε↓0

( ∞∑
n=1

n−1Ln(θ, θ′ − ε)−
∞∑
n=1

n−1Ln(θ, θ′ + ε)

)
= 0 (3)

because the tails of these series are seen to be uniformly small for ε in a neighborhood
of 0 as a consequence of the monotonicity of the Ln(θ, ·)’s. Relation (3) combined
with the monotonicity property, (i), establishes that, for every θ, L(θ, θ′) is continuous
at θ′ 6= θ, and continuity at θ′ = θ follows from the fact that limθ′→θ supL(θ, θ′) ≤
limθ′→θ sup I(θ, θ′) = 0.

The L-numbers play a different role in asymptotic evaluations of error probabilities.
The fact that the ratios L(θ, θ′)/I(θ, θ′) and L(θ′, θ)/I(θ′, θ) are the right correction
factors to Wald’s error probability bounds for SPRT’s was established in Siegmund
(1975) using different notation based on the work of Spitzer (1956) (see also the dis-
cussion in Lorden (1977). A generalization to mixture stopping rules was given in Lai
and Siegmund (1977) and the latter result is the basis for the asymptotic evaluation of
error probabilities in Section 3.

The next lemma provides the tools for analyzing the stopping risk asymptotically.

Lemma 1. Assume λ0 satisfies (A2). As ζ + t→∞,∫ θ

a
exp((y− θ)ζ − tI(θ, y))λ0(y)dy ∼ λ0(θ)

∫ θ

a
exp((y− θ)ζ − 1

2
tψ′′(θ)(y− θ)2)dy (4)
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uniformly for a < θ ≤ b, ζ ≥ ζ0 (arbitrary), and t ≥ 1. Under the additional restriction
θ ≥ a+ ε > a∫ θ

a
exp((y − θ)ζ − tI(θ, y))λ0(y)dy ∼ λ0(θ)

∫ θ

a
exp((y − θ)ζ − 1

2
tψ′′(θ)(y − θ)2)dy

(5)

= λ0(θ)

∫ 0

−∞
exp(xζ − 1

2
tψ′′(θ)x2)dx

uniformly.

Proof: Choose M > 1 large enough so that ψ′′, 1/ψ′′, ψ′′′, and λ0 are bounded above
by M on [a, b]. Then, letting u = ζ + t,∣∣∣∣I(θ, y)− 1

2
ψ′′(θ)(y − θ)2

∣∣∣∣ ≤M |y − θ|3 ≤Mu−6/5 (6)

provided that θ, y ∈ [a, b] and |y − θ| ≤ u−2/5. Furthermore, if y ≤ θ − u−2/5 and
u2/5 > 4M2, then using (6)

I(θ, y) ≥ I(θ, θ − u−2/5) ≥ 1

2
ψ′′(θ)u−4/5 −Mu−6/5 ≥ u−4/5

4M
. (7)

In the left-hand side of (4) write∫ θ

a
=

∫ max(a,θ−u−2/5)

a
+

∫ θ

max(a,θ−u−2/5)
.

Assuming from now on that u2/5 > 4M2, (7) implies

0 ≤
∫ max(a,θ−u−2/5)

a
≤M(b− a) exp

(
−

[
u−2/5(ζ + ζ−0 ) +

u−4/5t

4M
− (b− a)ζ−0

])

≤M(b− a) exp

(
−u

1/5

4M
+ (b− a)ζ−0

)
. (8)

Using (6)∫ θ

max(a,θ−u−2/5)
= ξ

∫ θ

max(a,θ−u−2/5)
exp((y − θ)ζ − 1

2
tψ′′(θ)(y − θ)2)dy,

where
e−Mu−1/5

min
[θ−u−2/5,θ]

λ0(y) ≤ ξ ≤ e−Mu−1/5
max

[θ−u−2/5,θ]
λ0(y).

Since λ0 is uniformly continuous and positive on [a, b], ξ ∼ λ0(θ) uniformly in θ, ζ, and
t as u→∞ and therefore∫ θ

max(a,θ−u−2/5)
∼ λ0(θ)

∫ θ

max(a,θ−u−2/5)
exp((y − θ)ζ − 1

2
tψ′′(θ)(y − θ)2)dy (9)

∼ λ0(θ)
∫ θ

a
exp((y − θ)ζ − 1

2
tψ′′(θ)(y − θ)2)dy,
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the last relation being verified as follows. In the non-trivial case where a < θ − u−2/5,∫ θ

a
exp((y − θ)ζ − 1

2
tψ′′(θ)(y − θ)2)dy ≥

∫ θ

θ−u−2/5

exp(Mu(y − θ))dy =
1− e−Mu3/5

Mu
,

(10)
whereas the integral from a to θ − u−2/5 can be estimated as in (8) and seen to be
uniformly of smaller order. Similarly, note from (8) - (10) that the contribution to the
left-hand side of (4) from [a,max(a, θ − u−2/5)] is negligible, so that (9) implies (4).

To prove (5), choose M to satisfy the additional requirement M > ε/2, write∫ θ
a exp((y − θ)ζ − 1

2 tψ
′′(θ)(y − θ)2)dy =

∫ θ
−∞−

∫ a
−∞, and note that since θ − a ≥ ε,∫ a

−∞
≤
∫ a

−∞
exp

(
(y − θ) εu

2M

)
dy ≤ 2M

εu
exp

(
− ε

2u

2M

)
,

whereas
∫ θ
−∞ is by (7) at least 1/2Mu for large u.

Remark. By a similar argument it can be shown that as t− ζ →∞∫ b

θ
exp ((y − θ)ζ − tI(θ, y))λ0(y)dy ∼ λ0(θ)

∫ b

θ
exp

(
(y − θ)ζ − 1

2
tψ′′(θ)(y − θ)2

)
dy

(11)
uniformly for a ≤ θ < b, ζ ≤ ζ1 (arbitrary), and t ≥ 1, and that under the additional
restriction θ ≤ b− ε < b,∫ b

θ
exp ((y − θ)ζ − tI(θ, y))λ0(y)dy ∼ λ0(θ)

∫ b

θ
exp(xζ − 1

2
tψ′′(θ)x2)dx. (12)

By applying Lemma 1 and the analogous relations (11) and (12), many asymptotic
relations can be derived which are useful in the sequel. For instance, using the identity

(y − θ)s− t(ψ(y)− ψ(θ)) = (y − θ)(s− tψ′(θ))− tI(θ, y)) (13)

and setting ζ = s− tψ(θ) leads to∫ b

a
exp(ys− tψ(y))λ0(y)dy = exp(θs− tψ(θ))

∫ b

a
exp((y − θ)ζ − tl(θ, y))λ0(y)dy

= exp(θs− tψ(θ))

(∫ θ

a
+

∫ b

θ

)
∼ λ0(θ) exp(θs− tψ(θ))

∫ ∞
−∞

exp(xζ − 1

2
tψ′′(θ)x2dx

=

(
2π

tψ′′(θ)

)1/2

λ0(θ)exp(θs− tψ(θ)) (14)

as t→∞, uniformly for s, t, θ satisfying

a+ ε ≤ θ ≤ b− ε and ζ0 ≤ s− tψ′(θ) ≤ ζ1.

In particular, if ψ′(a) + ε ≤ s/t ≤ ψ′(b) − ε, then setting θ = θ̂, so that s = tψ′(θ),
leads to the relation∫ b

a
exp(ys− tψ(y))λ0(y)dy ∼

(
2π

tψ′′(θ̂)

)1/2

λ0(θ̂) exp(θ̂s− tψ(θ̂)) (15)
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as t→∞.
To evaluate asymptotically the integral in (15) for all s/t ≥ bψ′(a)+ε (and similarly

for s/t ≤ bψ′(b)−ε), write it as the sum of integrals over [a, θ̂] and [θ̂, b], use the identity

(y − θ̂)s− t(ψ(y)− ψ(θ̂)) = (y − θ̂)(s− tψ′(b))+ − tl(θ̂, y)

and apply (5) and, if θ̂ < b, (11), to obtain∫ b

a
exp(ys− tψ(y))λ0(y)dy ∼

λ0(θ̂) exp(θ̂s− tψ(θ̂))

∫ b

∞
exp((y − θ̂)(s− tψ′(b))+ − 1

2
tψ′′(θ̂)(y − θ̂)2)dy.

Upon completing the square, the integral can be expressed using Mills’ Ratio ρ∗(x) =
Φ(−x)/φ(x). Using this result for θ̂ ≥ (a+b)/2 and the obvious analog for θ̂ ≤ (a+b)/2
yields the conclusion that as |s|+ t→∞, uniformly for all s and t > 1,

∫ b

a
exp(ys− tψ(y))λ0(y) ∼ λ0(θ̂) exp(sθ̂ − tψ(θ̂))√

tψ′′(θ̂)
×



ρ∗
(
|s−tψ′(a)|√
tψ′′(a)

)
, if s ≤ tψ′(a)

√
2πΦ

(√
tψ′′(θ̂) min(b− θ̂, θ̂ − a)

)
, if tψ′(a) ≤ s ≤ tψ′(b)

ρ∗
(
|s−tψ′(b)|√
tψ′′(b)

)
, if s ≥ tψ′(b).

(16)

When the full strength of (16) is not needed in the sequel, it is convenient to use
relations like

log

∫ b

a
exp(ys− tψ(y))λ0(y)dy = log

 √
2πλ0(θ̂) exp(θ̂s− tψ(θ̂))

√
2π(s− tψ′(b))+ +

√
tψ′′(θ̂)

+O(1), (17)

which holds uniformly for s/t ≥ ψ′(a) + ε as max(s, t) → ∞ and with o(1) uniformly
for ψ′(a) + ε ≤ s/t ≤ ψ′(b)− ε by (15). Relation (17) is easily derived from (16) using
the facts that the value of Φ in (16) is between 1/2 and 1 and that (1+

√
2πx)ρ∗(x) has

positive upper and lower bounds on [0,∞] (being positive and continuous with positive
limits at 0 and ∞).

Using relation (5) with λ replaced by λW , which like λ is continuous from the left
and positive at θ0 (the only value of θ needed),∫ θ0

a
exp(ys− tψ(y))λ0(y)W (y)dy

∼ λ0(θ0)W (θ0) exp(θ0s− tψ(θ0))ρ

(
s− tψ′(θ0)√
tψ′′(θ0)

)
(tψ′′(θ0))

−1/2

∼ λ0(θ0)W (θ0) exp(θ0s− tψ(θ0))

s− tψ′(θ0)
(18)

as (s− tψ′(θ0))/
√
tψ′′(θ0)→∞; hence, as max(s, t)→∞ for s/t ≥ ψ′(θ0) + ε.
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Since

ψ′(θ0) <
ψ(b)− ψ(θ0)

b− θ0
< ψ′(b)

by the convexity of ψ, it is routinely verified that if s/t > ψ′(b) then θ̂ = b and, keeping
this in mind, it is easy to see that

1

b− θ0
≤ s− tψ′(θ0)

(θ̂ − θ0)s− t(ψ(θ̂)− ψ(θ0))
≤ ψ′(θ̂)− ψ′(θ0)

I(θ̂, θ0)
,

the latter inequality because the indicated ratio is decreasing in s. For ψ′(θ0) + ε ≤
s/t ≤ ψ′(b) equality holds in the right-hand inequality. Using these facts it follows
from (18) that

log

∫ θ0

a
exp(ys− tψ(y))λ0(y)W (y)dy

= log

(
λ0(θ)W (θ0)I(θ̂, θ0) exp(θ0s− tψ(θ0))

(ψ′(θ̂)− ψ′(θ0))((θ̂ − θ0)s− t(ψ(θ̂)− ψ(θ0)))

)
+O(1) (19)

uniformly for s/t ≥ ψ′(θ0)+ε as max(s, t)→∞ and with o(1) uniformly for ψ′(θ0)+ε ≤
s/t ≤ ψ′(b).

Define
`0(s, t) = exp

[
(θ0 − θ̂)s− t(ψ(θ0)− ψ(θ̂))

]
,

the likelihood ratio for rejecting θ ≤ θ0, where θ̂ = θ̂(s, t). Combining (17) and (18),

log Y0(s, t)
−1 = log `0(s, t)

−1 − log

√
2π(s− tψ′(b))+ +

√
tψ′′(θ̂)

(s− tψ′(b))+ + t(ψ′(θ̂)− ψ′(θ0))
+O(1) (20)

≥ log `0(s, t)
−1 +O(1)

uniformly for s/t ≥ ψ′(θ0) + ε as max(s, t)→∞, and inspection of (20) shows that

log Y0(s, t)
−1 ≤ log `0(s, t)

−1 +
1

2
log t+O(1) (21)

≤ log `0(s, t)
−1 +

1

2
log log `0(s, t)

−1 +O(1)

since t ≤ I(θ̂, θ0)
−1 log `0(s, t)

−1 and I(θ̂, θ0) has a positive lower bound for s/t ≥
ψ′(θ0) + ε.

As a consequence of (20) and (21),

log Y0(s, t)
−1 ∼ log `0(s, t)

−1 (22)

uniformly for s/t ≥ ψ′(θ0) + ε as max(s, t) → ∞. Note that since max(s, t) ≥
(const.) log `0(s, t)

−1, (22) holds as log `0(s, t)
−1 →∞ and also as Y0(s, t)→ 0.

Also, if s ≥ 0 then

`0(s, t) ≤ exp(θ0s− tψ(θ0)) ≤ exp(−tψ(θ0)),

since θs − tψ(θ) vanishes at 0 and is therefore non-negative at θ̂, its maximum. By
(20), then,

log Y0(s, t)
−1 ≥ tψ(θ0) +O(1) as t→∞ for s ≥ 0. (23)
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Now, the denominator inside the brackets in (17) can be written in the form

√
t

(√
ψ′(θ̂) +

√
2πt(s/t− ψ′(b))+

)
and the factor

√
t can be substituted for, using the relation

I(θ̂, θ0)t =

(
1 +

b− θ0
I(b, θ0)

(s
t
− ψ′(b)

)+)−1
log `0(s, t)

−1,

so that (17) and (18) yield

log Y0(s, t)
−1 = log `0(s, t)

−1 +
1

2
log log `0(s, t)

−1 − logG0((s− tψ′(b))+, t)

− logH0(θ̂) +O(1), (24)

where

G0((s− tψ′(b))+, t) =

1 +
√

2π

(
s−tψ′(b)√
tψ′′(b)

)+

(
1 + b−θ0

I(b,θ0)
( st − ψ′(b))+

)1/2
and

H0(θ̂) =
(I(θ̂, θ0)ψ

′′(θ̂))1/2λ0(θ0)W (θ0)√
2πλ0(θ̂)(ψ′(θ̂)− ψ′(θ0))

,

and this relation holds uniformly for s/t ≥ ψ′(θ0) + ε as max(s, t)→∞ and with o(1)
uniformly for ψ′(θ0) + ε ≤ s/t ≤ ψ′(b)− ε. Furthermore, by (22)

log Y0(s, t)
−1 − 1

2
log log Y0(s, t)

−1 = log `0(s, t)
−1 − logG0((s− tψ′(b))+, t)

− logH0(θ̂) +O(1) (25)

and a o(1) version holds, with the same stipulations as in (24).
Asymptotic evaluation of the reciprocal mixed likelihood ratio,

`0(s, t) =
exp(θ0s− tψ(θ0)∫ b

a exp(ys− tψ(y))λ0(y)dy
,

follows easily from the fact that

Y0(s, t)

`0(s, t)
=

∫ θ0

a
exp((y − θ0)s− t(ψ(y)− ψ(θ0)))λ0(y)W (y)dy,

whence by (19)

log `0(s, t)
−1 = log Y0(s, t)

−1 − log log `0(s, t)
−1 + log

λ0(θ0)W (θ0)I(θ̂, θ0)

ψ′(θ̂)− ψ′(θ0)
+O(1),

and using (22)

log `0(s, t)
−1 = log Y0(s, t)

−1− log log Y0(s, t)
−1 +log

λ0(θ0)W (θ0)I(θ̂, θ0)

ψ′(θ̂)− ψ′(θ0)
+O(1) (26)

uniformly for s/t ≥ ψ′(θ0) as max(s, t)→∞ and with o(1) uniformly for ψ′(θ0) + ε ≤
s/t ≤ ψ′(b) (and also as Y0(s, t)→ 0 or `0(s, t)→ 0).

Let λs,t([θ, θ
′]) denote the λs,t-probability of the interval [θ, θ′]. The next result

provides an estimate which is useful in Section 2.
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Lemma 2. Under (A1) and (A2), for arbitrary s1 ≤ 0 and θ∗ ∈ (θ0, 0) there exist
A > 0 and 0 < ρ < 1 such that

λs,t([a, θ
∗]) ≤ A(Y0(s, t))

ρ

for t ≥ 1, s ≥ s1.

Proof: Choose θ∗ < v < w < 0. Using the convexity of ψ it is easy to see that for all
s ≥ 0, t ≥ 1, letting ρ = (ψ(θ∗)− ψ(v))/(ψ(a)− ψ(v)) (and noting 0 < ρ < 1)

(v − θ∗)s− t(ψ(v)− ψ(θ∗)) ≥ ρ{(v − a1)s− t(ψ(v)− ψ(a1))}, (27)

where a1 is as defined in the paragraph following (A2). Also, for s1 ≤ s < 0, t ≥ 1, the
right-hand side of (27) can exceed the left-hand side by at most [ρ(v−a1)−(v−θ∗)]s1 =
B > 0, and combining the two cases leads to

fvt
fθ∗t

exp(B) ≥
(
fvt
fa1t

)ρ
,

or, equivalently,
fθ∗t ≤ exp(B)fρa1tf

1−ρ
vt (28)

for s ≥ s1, t ≥ 1.
Consider first the region where either s ≥ 0, or else t ≥ s1/ψ

′(w) and s ≥ s1. For
t, s in this region, the likelihood function fθt = exp(θs− tψ(θ)) is increasing for θ ≤ w
because θ̂ ≥ w. Hence,∫ θ∗

θ0

fθtλ0(θ)dθ ≤ fθ∗t,
∫ θ0

a1

fθtλ0(θ)W (θ)dθ ≥ fa1t
∫ θ0

a1

λ0(θ)W (θ)dθ > 0,

and

∫ w

v
fθtλ0(θ)dθ ≥ fvtλ0([v, w]) > 0,

which combine with (28) to yield∫ θ∗

θ0

fθtλ0(θ)dθ ≤ A1

(∫ θ0

a1

fθtλ0(θ)W (θ)dθ

)ρ(∫ w

v
fθtλ0(θ)dθ

)1−ρ

for an obvious choice of A1 > 0. Increasing the domain of the last integral from [v, w]
to [a1, b1],

λs,t([θ0, u]) ≤ A1(Y0(s, t))
ρ.

Clearly λs,t([a1, θ0]) ≤ (inf [a1,θ0]W )−1Y0(s, t) and, hence, allowing for the possibility
that Y0 > 1,

λs,t([a1, θ0]) ≤
(

1 + ( inf
[a1,θ0]

W )−1
)

(Y0(s, t))
ρ

and addition produces the stated result.
In the region where s1 ≤ s < 0 and 1 ≤ t < s1/ψ

′(w) it is easy to see that Y0(s, t)
is bounded away from 0, so that choosing A large enough makes the inequality hold
here also, proving the lemma.
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2 Main results

An important property of the Bayes procedures is given by

Lemma 3. Under (A1) and (A2) there exists an M∗ > 1 such that if the stopping risk,
r(λs,t), exceeds M∗c, then the risk of continuing at (t, s) is smaller than the stopping
risk.

Proof: It will first be established that if |s| is sufficiently large, the sign of s determines
which of Y0(s, t), Y1(s, t) attains r(λs,t). Note that

Y1(s, t)

Y0(s, t)
=

∫ b
θ1

exp(ys− tψ(y))λ0(y)W (y)dy∫ θ0
a exp(ys− tψ(y))λ0(y)W (y)dy

, (29)

which is clearly increasing in s since θ0 < θ1. Fix

s = s2 > (θ1 − θ0)−1
(

log
λ0(θ1)W (θ1)|ψ′(θ0)|
λ0(θ0)W (θ0)ψ′(θ1)

)−
.

Recall that ψ(θ0) = ψ(θ1) and note that by (18) and its analog for the numerator of
(29), as t→∞,

log
Y1(s2, t)

Y0(s2, t)
= (θ1 − θ0)s2 + log

λ0(θ1)W (θ1)

λ0(θ0)W (θ0)
+ log

s2 − tψ′(θ0)
tψ′(θ1)− s2

+ o(1)

≥ (θ1 − θ0)s2 + log
λ0(θ1)W (θ1)|ψ′(θ0)|
λ0(θ0)W (θ0)ψ′(θ1)

+ o(1),

which by the choice of s2 is positive for large t – say, for t ≥ t0. Thus, since the ratio in
(29) is increasing in s, it is evidently greater than 1 for s ≥ s2 provided that t ≥ t0. For
1 ≤ t < t0, obvious estimates show that this ratio tends to +∞ uniformly as s→ +∞.
Hence, there is an s1 ≥ s2 such that if s ≥ s1 then the ratio is greater than 1 for all
t ≥ 1. Combining this with a similar result for negative s, there exists an s0 such that

|s| ≥ s0 ⇒ sgn(Y1(s, t)− Y0(s, t)) = sgn s. (30)

For the remainder of the proof, assume that r(λs,t) = Y0(s, t), the other case being
similar. Then s ≥ −s0 and, choosing θ∗ ∈ (θ0, 0), Lemma 2 gives

λs,t([a, θ
∗]) ≤ A(Y0(s, t))

ρ, (31)

where 0 < ρ < 1.
To obtain an upper bound on the risk of continuing, consider the continuation δ(c)

that stops as soon as the stopping risk is less than c and chooses a terminal decision
minimizing the a posteriori risk. Since the error part of the risk of this continuation is
less than c, it suffices to show that

c

∫ b

a
EθN(c)λs,t(θ)dθ ≤ Y0(s, t)− c,

where N(c) is the number of observations taken by δ(c), or, equivalently,∫ b

a
EθN(c)λs,t(θ)dθ ≤ c−1Y0(s, t)− 1, (32)
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if c−1Y0(s, t) > M∗ > 1 (suitably chosen).
Since λ0 is continuous and positive at θ0, it is at least ε on [θ0, θ0 + 2ε] for some

0 < ε < −θ0/2. Now, if s ≥ 0, then the likelihood function fθt is increasing for θ ≤ 0
and thus

Y0(s, t) ≤
(supλ0W )fθ0t

λ0([θ0 + ε, θ0 + 2ε])fθ0+ε,t
≤ (supλ0W )fθ0t

ε2fθ0+ε,t

≤ (supλ0W )

ε2
exp(−tI(θ0 + ε, θ0)).

Using this and a similar estimate for Y1(s, t) in case s ≤ 0, it is seen that the stopping
risk goes to zero exponentially in t as t → ∞, uniformly in s. Therefore, there is a
B > 0 such that

N(c) ≤ B(1 + log c−1), (33)

whence by (31)∫ θ∗

a
EθN(c)λs,t(θ)dθ ≤ AB(Y0(s, t))

ρ(1 + log c−1) ≤ ABρ−1(c−1Y0(s, t))ρ. (34)

To estimate EθN(c) for θ∗ ≤ θ ≤ b, define the stopping times

N(θ, γ) = inf{n | (θ − θ0)Sn − n(ψ(θ)− ψ(θ0)) ≥ γ}

for γ ≥ 0 and θ ∈ (θ∗, b]. By Wald’s equation and the upper hound on excess over the
boundary in Lorden (1970)

EθN(θ, γ) ≤ γ

I(θ, θ0)
+ 1 +

(θ − θ0)2ψ′′(θ)
(I(θ, θ0))2

≤ B∗(1 + γ) (35)

for θ∗ ≤ θ ≤ b.
To verify that for all θ ∈ (θ∗, b]

N(c) ≤ N(θ, γ(θ)) where γ(θ) =
θ − θ0
θ∗ − θ0

log
c−1Y0(s, t)

λs,t([θ∗, θ])
, (36)

it suffices to show that at time n = N(θ, γ(θ))∫ θ0

a
exp{(y − θ0)Sn − n(ψ(y)− ψ(θ0))}λs,t(y)W (y)dy

≤ c
∫ b

a
exp[(y − θ0)Sn − n(ψ(y)− ψ(θ0))]λs,t(y)dy. (37)

For θ∗ ≤ y ≤ θ the bracketed quantity on the right equals at time n = N(θ, γ(θ))

(y − θ0)
[
Sn − n

ψ(y)− ψ(θ0)

y − θ0

]
≥ (y − θ0)

[
Sn − n

ψ(θ)− ψ(θ0)

θ − θ0

]
≥ (y − θ0)

γ(θ)

θ − θ0

≥ θ∗ − θ0
θ − θ0

γ(θ) = log
c−1Y0(s, t)

γs,t([θ∗, θ])
,

by the convexity of ψ and the definition of N(θ, γ(θ)). Hence, the right- hand side of
(37) is at least Y0(s, t). The left-hand side of (37) is indeed smaller because at time
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n = N(θ, γ(θ)) the concave function ySn−nψ(y) is larger at y = θ than at y = θ0 and,
hence, is even smaller for y < θ0, so that the quantity in braces is negative.

From (35) and (36) it follows that for θ ∈ (θ∗, b]

EθN(c) ≤ B∗
(

1 +
b− θ0
θ∗ − θ0

log
c−1Y0(s, t)

λs,t([θ∗, θ])

)
,

whence∫ b

θ∗
EθN(c)λs,t(θ)dθ ≤ B∗

(
1 +

b− θ0
θ∗ − θ0

log c−1Y0(s, t)

)
+B∗

∫ b

θ∗

(
log λs,t([θ

∗, θ])−1
)
λs,t(θ)dθ.

This last integral by the change of variable u = λs,t([θ
∗, θ]) is seen to equal the integral

of log u−1du from 0 to λs,t([θ
∗, b]), which is less than 1. Combining these estimates

with (34) yields∫ b

a
EθN(c)λs,t(θ)dθ ≤ ABρ−1(c−1Y0(s, t))ρ +B∗∗(2 + log(c−1Y0(s, t))), (38)

where B∗∗ is B times (b− θ0)/(θ∗ − θ0). To prove (32), note that the right-hand side
of (38) is of smaller order than c−1Y0(s, t) as the latter tends to infinity. Hence, there
exists an M∗ ≥ 1 such that for c−1Y0(s, t) > M∗ (38) implies (32) and the lemma is
proved.

Lemma 4. For every n, as t→∞

log Y0(s+ Sn, t+ n)−1 = log Y0(s, t)
−1 + (θ̂ − θ0)Sn − n(ψ(θ̂)− ψ(θ0)) + o(1) (39)

uniformly for |Sn| ≤ A <∞ and ψ′(θ0) + ε ≤ s/t ≤ ψ′(b)− ε, where θ̂ = θ̂(s, t).

Proof: The conditions on Sn and s/t imply that for t ≥ 2ε−1A+ n

ψ′(θ0) +
ε

2
≤ s+ Sn

t+ n
≤ ψ′(b) =

ε

2
.

Thus, (18) applies to show that the logarithm of the ratio of the numerator of Y0(s+
Sn, t+ n) to that of Y0(s, t) equals

θ0Sn − nψ(θ0)− log

(
1 +

Sn − nψ′(θ0)
s− tψ′(θ0)

)
+ o(1) = θ0Sn − nψ(θ0) + o(1)

uniformly as t→∞. Also, (14) applies to the denominators of the risks since s = tψ′(θ̂)
and −A − nψ′(b) ≤ s + Sn − (t + n)ψ′(θ̂) ≤ A − nψ′(θ0). Therefore, the logarithm of
the ratio of the denominator of Y0(s+ Sn, t+ n) to that of Y0(s+ t) evidently equals
θ̂Sn − nψ(θ̂) + o(1) uniformly as t→∞ and the lemma follows.

For every n = 1, 2, . . .,

ρn(θ1, θ2) = E0|fθ1n − fθ2n| (40)

defines a metric on the natural parameter space which is continuous in each variable.
Clearly

ρn(θ1, θ2) = Eθ1

∣∣∣∣fθ2nfθ1n
− 1

∣∣∣∣ = Eθ2

∣∣∣∣fθ1nfθ2n
− 1

∣∣∣∣ (41)
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and if A is Fn-measurable and N is a stopping time ≤ n on A, then N1{A} is Fn-
measurable and

|Eθ1N1{A} − Eθ2N1{A}| = |E0N1{A}fθ1n − E0N1{A}fθ2n|
≤ |E0N1{A}(fθ1n − fθ2n)| ≤ nρn(θ1, θ2). (42)

Define the family of tests {δ(c)} by the rules

(i) stop and reject θ ≤ θ0 if s ≥ 0 and

L(θ̂, θ0)H0(θ̂)G0((s− tψ′(b))+, t)`0(s, t) ≤ c
√

log c−1,

(ii) stop and reject θ ≥ θ1 if s < 0 and

L(θ̂, θ1)H1(θ̂)G1((s− tψ′(a))−, t)`1(s, t) ≤ c
√

log c−1,

where `0, G0, and H0 are as in (24) and `1, G1, and H1 are defined similarly. As
a consequence of (25) in the O(1) version and its analog for Y1(s, t) there exists an
M∗∗ > 0 such that δ(c) stops whenever the stopping risk is ≤ M∗∗c. Using the same

relations, it is clear that there is an M̃ > 0 such that δ(c) continues if the stopping

risk exceeds M̃c, and furthermore the posterior risk of δ(c)’s terminal decision is at

most M̃c. (In the sequel, it is assumed that M∗, satisfying Lemma 3, is chosen to be

at least max(M̃, L0(0, θ0)
−1, L0(0, θ1)

−1), whence the above stopping-risk property of
δ(c) as well as the similar property of the Bayes procedures can be stated in terms of
the same M∗.)

Also define the family of GSLRT’s {δ̂(c)} by the modification of (i) and (ii) obtained
by omitting G0 and G1.

The main lemma needed for the proof of Theorem 1 is

Lemma 5. Fix 0 < b1 < b2 < b. Let

B1(c) = {(t, s) | b1 ≤ θ̂(s, t) ≤ b2 and Y0(s, t) ≤M∗c}.

Assume (A1) and (A2) hold and let δ∗(c) denote a Bayes solution. As c→ 0,

rc(λs,t, δ
∗(c)) = cR(θ̂, c−1r(λs,t)) + o(c),

and
rc(λs,t, δ(c)) = cR(θ̂, c−1r(λs,t)) + o(c),

uniformly for (t, s) ∈ B1(c), where

R(θ, v) = infN≥0Eθ

(
N + v

fθ0N
fθN

)
.

Proof: Consider a prior λ = λs,t ∈ B1(c) and write

rc(λ, δ(c)) =

∫ b

a
Eθ
[
cN(c) + r̃(λN(c))

]
λ(θ)dθ, (43)

where r̃ denotes the (not necessarily optimal) posterior risk of the decision made by
δ. Consider 0 < ε < min(b1, b − b2) to be chosen later and note that since the log-
likelihood function θs − tψ(θ) associated with λ = λs,t is concave with maximum at

16



θ̂ = θ̂(s, t)

λ([a, θ̂−ε]) =

∫ θ̂−ε
a exp(ys− tψ(y))λ0(y)dy∫ b
a exp(ys− tψ(y))λ0(y)dy

≤
f
θ̂−ε,t

(1/2)ελ0fθ̂−ε/2,t
≤ 2(ελ0)

−1

(
f
θ̂−ε,t
f
θ̂t

)1/2

= 2(ελ0)
−1e−(1/2)tI(θ̂,θ̂−ε) ≤ 2(ελ0)

−1e−tm1ε2

where λ0 = minλ0 and m1 = (1/2) minψ′′ on [0, b2]. Using (21) and the fact that
(t, s) ∈ B1(c),

log Y0(s, t)
−1 ≤ 3

2
log `0(s, t)

−1 +O(1) ≤ 3

2
tI(b2, θ0) +O(1) (44)

uniformly in s as t → ∞, which combines with the estimate for λ([a, θ̂ − ε]) and a
similar estimate for λ([θ̂ + ε, b]) to yield the existence of positive B and ρ such that

λ((θ̂ − ε, θ̂ + ε)) ≥ 1−Bε−1cρε2 (45)

for all (t, s) ∈ B(c). (Note that, as c → ∞, (t, s) ∈ B(c) implies Y0(s, t) → 0, so that
max(s, t) → ∞ and, hence, t → ∞.) Since δ(c) stops by the time the stopping risk is
less than M∗∗c, the bound in (33) applies, and using also the fact that δ(c) chooses a
decision having risk at most M∗c, the stopping time N(c) of δ(c) satisfies

Eθ[cN(c) + r̃(λN(c))] ≤ B′c(1 + log c−1), (46)

whence by (43) and (45)∣∣∣∣∣rc(λ, δ(c))−
∫ θ̂+ε

θ̂−ε
Eθ[cN(c) + r̃(λN(c))]λ(θ)dθ

∣∣∣∣∣
≤ BB′ε−1c1+ρε2(1 + log c−1) = o(c) (47)

for all λ = λs,t such that (t, s) ∈ B1(c), upon choosing ε = ε(c) = (log c−1)−1/3, which
goes to zero with c.

By the strict convexity of ψ

ψ′(θ)− ψ(θ)− θ0
θ − θ0

is positive for 0 ≤ θ ≤ b and, being continuous, has a positive minimum, say 2η. Since
ψ′ is uniformly continuous on [θ0, b], there is a positive ε1 < min(b1, b− b2) such that

ψ′(θ)− ψ′(θ − 2ε1) < η for 0 ≤ θ ≤ b, (48)

whence

ψ′(θ − 2ε1)−
ψ(θ)− θ0
θ − θ0

> η > 0 for 0 ≤ θ ≤ b.

Using this relation and the monotonicity of the difference quotient yields for γ > 0 and
b1 ≤ θ̂ ≤ b2

Sn ≥
γ

−θ0
+ n(ψ′(θ̂ − ε1)− η)

⇒ Sn ≥
γ

y − θ0
+ n

ψ(y)− ψ(θ0)

y − θ0
for 0 ≤ y ≤ θ̂ + ε1. (49)
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Choosing 0 < h < −a, η/(max[a,b] ψ
′′), by (49) and Chebyshev’s inequality, for θ̂−ε1 ≤

θ ≤ θ̂ + ε1

Pθ

(
Sn <

γ

y − θ0
+ n

ψ(y)− ψ(θ0)

y − θ0
for some 0 ≤ y ≤ θ̂ + ε1

)
≤ Pθ

(
exp(−h{Sn +

γ

θ0
− n(ψ′(θ̂ − ε1)− η)}) ≥ 1

)
≤ exp

(
−hγ
θ0

+ n[ψ(θ − h)− ψ(θ) + h(ψ′(θ − ε1)− η)]

)
≤ exp

(
−hγ
θ0

+ n

[
1

2
h2 max

[a,b]
ψ′′ − hη

])
= Be−An (A,B > 0). (50)

Define the stopping time

N = inf

{
n | n ≥ 1, Sn ≥

log(2M∗/M∗∗)

y − θ0
+ n

ψ(y)− ψ(θ0)

y − θ0
for 0 ≤ y ≤ θ̂ + ε1

}
.

Since the log-likelihood function is concave, the maximum likelihood over [a, θ0] at time
N is at θ0 and is a factor of at least 2M∗/M∗∗ smaller than the minimum likelihood
on [0, θ̂ + ε1]. It follows easily that the risk of rejecting θ ≤ θ0 at time N is ≤
M∗∗Y0(s, t)/2M

∗λs,t([0, θ̂ + ε1]), which is less than M∗c by (45) for all (t, s) ∈ B1(c)
provided that log c−1 ≥ (ρε21)

−1 log(2Bε−11 ). Assume from now on that this last holds
and that ε = ε(c) ≤ ε1. Then

N(c) ≤ N for (t, s) ∈ B1(c). (51)

By the definition of N and (50), there exist A,B > 0 such that for b1 ≤ θ̂ ≤ b2

Pθ(N > n) ≤ Be−An for θ̂ − ε ≤ θ ≤ θ̂ + ε. (52)

For m = 1, 2, . . . define the events

Vm =

{
N ≤ m, max

k≤N
|Sk| ≤ m2

}
and the stopping times

Nm = min(m+ 1, inf{n | |Sn| > m2}).

Note that
Vm ⊂ {N < Nm}. (53)

Also note that for 0 ≤ θ ≤ b2 + ε1 and 0 < h < b− b2 − ε1

Pθ

(
max
k≤m

Sk > m2

)
≤

m∑
1

Pθ(Sk > m2) =
m∑
1

Pθ(exp(h(Sk −m2)) ≥ 1)

≤
m∑
1

Eθ exp(h(Sk −m2)) =

m∑
1

exp(kψ(θ + h)− hm2) ≤ m exp(mψ(b)− hm2),

which goes to zero exponentially as m→∞. By this result and a similar estimate for
maxk≤m(−Sk),

Pθ

(
max
k≤m
|Sk| > m2

)
≤ B1 exp(−A1m) (A1, B1 > 0) (54)
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for 0 ≤ θ ≤ b2 + ε1.
Using (51) and the fact that r̃(λN(c)) ≤M∗c, (47) yields for ε = ε(c)∣∣∣∣∣rc(λ, δ(c))−

∫ θ̂+ε

θ̂−ε
Eθ[(cN(c) + r̃(λN(c)))1{Vm}]λ(θ)dθ

∣∣∣∣∣
≤ c sup

θ̂−ε≤θ≤θ̂+ε
Eθ[(N +M∗)1{V ′m}] + o(c).

Using the definitions of N and Vm,

Eθ(N +M∗)1{V ′m} ≤ Eθ(N +M∗)1{N > m}+ (m+M∗)Pθ

(
max
k≤m
|Sk| > m2

)
.

As m→∞, this last goes to 0 uniformly for θ ∈ [θ̂− ε, θ̂+ ε] and b1 ≤ θ̂ ≤ b2 by virtue
of (52) and (54). Hence, combining this with the preceding estimate for rc(λ, δ(c)),∣∣∣∣∣rc(λ, δ(c))−

∫ θ̂+ε

θ̂−ε
Eθ[(cN(c) + r̃(λN(c)))1{Vm}]λ(θ)dθ

∣∣∣∣∣ ≤ amc+ o(c) (55)

uniformly for (t, s) ∈ B1(c), where ε = ε(c) = (log c−1)−1/3 and {am} is a sequence
decreasing to zero. (Note that the o(c) term depends on m.)

To see that the expectation in (55) is essentially constant in θ, note that r̃(λN(c)) ≤
M∗c and, on Vm, N(c) ≤ N ≤ m so that (42) applies and, hence, for θ ∈ [θ̂ − ε, θ̂ + ε]∣∣Eθ(cN(c) + r̃(λN(c)))1{Vm} − Eθ̂(cN(c) + r̃(λN(c)))1{Vm}

∣∣
≤ cmρm(θ, θ̂) + E0|r̃(λN(c))1{Vm}(fθm − fθ̂m)| ≤ c(m+M∗)ρm(θ, θ̂). (56)

If θ ∈ [0, b] and θ̂ ∈ [b1, b2], then

lim
ε↓0

sup
|θ−θ̂|<ε

ρm(θ, θ̂) = 0. (57)

To verify (57), note that for ε ≤ min(−a, b− b2)

ρm(θ, θ̂) = E
θ̂

∣∣∣∣fθmf
θ̂m

− 1

∣∣∣∣ ≤ Eθ̂(emψ′(b)ε+ε|Sm| − 1) <∞,

since |θ − θ̂| < ε implies that for θ, θ̂ ∈ [0, b]

|(θ − θ̂)Sm −m(ψ(θ)− ψ(θ̂))| ≤ ε|Sm|+mψ′(b)ε

and for all θ̂ ∈ [b1, b2] the moment generating function of Sm is finite on [a, b− b2]. It
follows by considering the cases Sm ≥ 0 and Sm < 0 in which exp(mψ′(b)ε+ ε|Sm|) is
stochastically largest when θ̂ = b2 and θ̂ = b1, respectively, that

ρm(θ, θ̂) ≤ Eb1(emψ
′(b)ε+ε|Sm| − 1) + Eb2(emψ

′(b)ε+ε|Sm| − 1)

which tends to zero with ε by monotone convergence, proving (57). Using (57) with
ε = ε(c)→ 0, (56) and (55) yield∣∣∣rc(λ, δ(c))− Eθ̂[(cN(c) + r̃(λN(c)))1{Vm} · λ([θ̂ − ε, θ̂ + ε])

∣∣∣ ≤ amc+ o(c),
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whence ∣∣rc(λ, δ(c))− Eθ̂[(cN(c) + r̃(λN(c)))1{Vm}]
∣∣ ≤ amc+ o(c) (58)

uniformly for (t, s) ∈ B1(c), the last by (45) and (46).
For (t, s) ∈ B1(c), s ≥ tψ′(b1) > 0, so that as c → 0 (and, hence, t → ∞), for

n = 1, . . . ,m, s+ Sn ≥ tψ′(b1)−m2 ≥ s0 on {Nm > n} and therefore, by (30) and the
definition of δ(c), δ(c) attains the stopping risk on {Nm > N(c)} by rejecting θ ≤ θ0.
Applying Lemma 4 then on {Nm > n}∣∣∣∣r(λn)− r(λ)

fθ0n
f
θ̂n

∣∣∣∣ ≤ r(λ) · o(1) = o(c),

whence, recalling that Nm ≤ m+ 1,∣∣∣∣∣r̃(λN(c))− r(λ)
fθ0N(c)

f
θ̂N(c)

∣∣∣∣∣ = o(c) on {Nm > N(c)} (59)

uniformly for λ = λs,t, (t, s) ∈ B1(c). By (58), (59), and the fact that∣∣∣∣∣rc(λ, δ(c))− Eθ̂
[(

cN(c) + r(λ) ·
fθ0N(c)

f
θ̂N(c)

)
1{Vm}

]∣∣∣∣∣ ≤ amc+ o(c) (60)

uniformly for (t, s) ∈ B1(c).
Note that the only properties of δ(c) used to establish (60) were the bounds M∗∗c

and M∗c on its stopping regions and the posterior risk of its terminal decision, and the
optimal choice of terminal decision when s > s0. Hence, the same argument applies to
δ∗(c) and yields∣∣∣∣∣rc(λ, δ∗(c))− Eθ̂

[(
cN∗(c) + r(λ) ·

fθ0N∗(c)

f
θ̂N∗(c)

)
1{Vm}

]∣∣∣∣∣ ≤ amc+ o(c). (61)

Define the modified stopping time

N∗∗(c) =

{
N∗(c) if N∗(c) < Nm

Ñ(c) if N∗(c) ≥ Nm,

where Ñ(c) is the smallest n ≥ 0 (or ∞ if there is no n) such that

r(λ)
fθ0n
f
θ̂n

≤ c

L(θ̂, θ0)
.

Note that by (53) and the fact that N∗(c) ≤ N

N∗∗(c) = N∗(c) on Vm.

Therefore, using (61)∣∣∣∣∣rc(λ, δ∗(c))− Eθ̂
[
cN∗∗(c) + r(λ)

fθ0N∗∗(c)

f
θ̂N∗∗(c)

]∣∣∣∣∣ ≤ amc+ o(c) (62)

once it is shown that

E
θ̂

[(
cN∗∗(c) + r(λ)

fθ0N∗∗(c)

f
θ̂N∗∗(c)

)
1{Vm}

]
= o(c). (63)
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Now, since N∗∗(c) ≤ N is clear using the definition of Ñ(c), the left-hand side of (63)
is at most

cE
θ̂
N1{V ′m}+

c

L(b1, θ0)
P
θ̂
(V ′m) +M∗cP

θ̂
(V ′m) + o(c),

the second term for the case where N∗(c) ≥ Nm and the third term plus o(c) for the
case where N∗(c) < Nm in which, by an argument like the one for (59),

r(λ)
fθ0N∗(c)

f
θ̂N∗(c)

= r(λN∗(c)) + o(c) ≤M∗c+ o(c).

By arguing as in the derivation of (55), the estimate for the left-hand side of (63) is
shown to be o(c), so that (63) holds and, hence, (62). By definition of R(θ, v), therefore,

rc(λ, δ ∗ (c)) ≥ cR(θ̂, c−1r(λ))− amc+ o(c). (64)

To handle δ(c), consider a similar modification N ′(c) of N(c), using Ñ(c) if N(c) ≥
Nm. Then similar estimates show that (60) implies the analog of (62),∣∣∣∣rc(λ, δ(c))− Eθ̂ [cN ′(c) + r(λ)

fθ0N ′(c)

fθN ′(c)

]∣∣∣∣ ≤ amc+ o(c). (65)

Routine calculation shows that∣∣∣∣Sn + s

t+ n
− s

t

∣∣∣∣ ≤ m2 +mψ′(b)

t
on {Nm > n} (66)

for (t, s) ∈ B1(c). Now, (44) shows that (t, s) ∈ B1(c) implies t→∞ uniformly as c→ 0.
Hence, for sufficiently small c, (66) implies that (Sn+s)/(t+n) ∈ (ψ′(b1)/2, ψ

′(b2)/2+
ψ′(b)/2) and, applying the o(1) version of (24), with θ̃ denoting θ̂(s+ Sn, t+ n),

log Y0(s+ Sn, t+ n)−1 = log `0(s+ Sn, t+ n)−1 +
1

2
log log `0(s+ Sn, t+ n)−1

− logH0(θ̃) + o(1) on {Nm > n},

uniformly for (t, s) ∈ B1(c). The definition of N(c) now shows that on {n ≤ N(c) <
Nm}, N(c) stops at n if and only if

log Y0(s+ Sn, t+ n)−1 ≥ log c−1 + logL(θ̃, θ0) + o(1)

or, equivalently, using Lemma 4, the uniform continuity of logL(·, θ) on [0, b], and (66),
if and only if

log r(λ)−1 + log
f
θ̂n

fθ0n
≥ log c−1 + logL(θ̂, θ0) + o(1), (67)

where the o(1) term is uniform for (t, s) ∈ B1(c). Using (67) in the case where N(c) <
Nm and the definition of Ñ(c) in case N(c) ≥ Nm, it follows that there exists ρ(c) ↓ 1
as c→ 0 such that

r(λ)
fθ0N ′(c)

f
θ̂N ′(c)

≤ cρ(c)

L(θ̂, θ0)
(68)

and

r(λ)
fθ0n
f
θ̂n

>
c

ρ(c)L(θ̂, θ0)
on {N ′(c) > n} (69)
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for all λ = λs,t, (t, s) ∈ B1(c).
It follows from (68) and (69) using Lemma 6 below that

E
θ̂

[
N ′(c) + c−1r(λ)

fθ0N ′(c)

f
θ̂N ′(c)

]
≤ R(θ̂, c−1r(λ)) +

2(ρ(c)− 1)

L(θ̂, θ0)

= R(θ̂, c−1r(λ)) + o(1)

uniformly since L(θ̂, θ0) ≥ L(b1, θ0). Hence, by (65)

r(λ, δ(c)) ≤ R(θ̂, c−1r(λ)) + amc+ o(c)

which combines with (64) and the fact that r(λ, δ∗(c)) ≤ r(λ, δ(c)) to yield

|r(λ, δ(c))− r(λ, δ∗(c))| ≤ 2amc+ o(c) = c(2am + g(c,m)),

where g(c,m) goes to zero with c for fixed m. The bound on the difference of risks,
divided by c, has limit supremum at most 2am as c → 0 and the lemma follows upon
letting m→∞.

The next result is an extension of Lemma 1 of Lorden (1977).

Lemma 6. Suppose that the stopping time N satisfies for some v > 0 and ρ ≥ 1

(i) vL(θ, θ0)fθ0N ≤ ρfθN
and

(ii) ρvL(θ, θ0)fθ0n > fθn on {N > n}, n = 0, 1, . . ..

Then

Eθ

(
N + v

fθ0N
fθN

)
≤ R(θ, v) +

2(ρ− 1)

L(θ, θ0)
.

Proof: By Lemma 1 of Lorden (1977), for w > 0 R(θ, w) is attained by

T (w) = inf{n | n ≥ 0, wL(θ, θ0)fθ0n ≤ fθn}.

By (ii), N ≤ T (ρv) and, conditioning on FN ,

Eθ

(
T (ρv) + v

fθ0T (ρv)

fθT (ρv)

)
≥ Eθ

(
N + v

fθ0N
fθN

)
− EθEθ

[
v
fθ0N
fθN

−R
(
θ, v

fθ0N
fθN

)∣∣∣∣FN] . (70)

Now, if vL(θ, θ0)fθ0N > fθN , then

v
fθ0N
fθN

−R
(
θ, v

fθ0N
fθN

)
≤ ρ

L(θ, θ0)
−R(θ, L−1(θ, θ0)) =

ρ− 1

L(θ, θ0)

by (i) and the obvious monotonicity of R(θ, ·). (Note that R(θ, L−1) ≥ R(θ, w) =
w for w < L−1 since T (w) ≡ 0, whence R(θ, L−1) ≥ L−1 and, the reverse being
obvious, R(θ, L−1) = L−1.) In case vL(θ, θ0)fθ0N ≤ fθN , R(θ, vfθ0N/fθN ) is attained
by stopping, hence equals vfθ0N/fθN . Putting the cases together and using (70),

Eθ

(
T (ρv) + v

fθ0T (ρv)

fθT (ρv)

)
≥ Eθ

(
N + v

fθ0N
fθN

)
− ρ− 1

L(θ, θ0)
.

22



Since T (ρv) attains R(θ, ρv),

Eθ

(
T (ρv) + ρv

fθ0T (ρv)

fθT (ρv)

)
≤ Eθ

(
T (v) + ρv

fθ0T (v)

fθT (v)

)
≤ Eθ

(
T (v) + v

fθ0T (v)

fθT (v)

)
+ (ρ− 1)vEθ

(
fθ0T (v)

fθT (v)

)
≤ R(θ, v) +

ρ− 1

L(θ, θ0)

using the definition of T (v), and this together with the preceding relation proves the
lemma.

Theorem 1. Under assumptions (A1) and (A2),

rc(λ0, δ̂(c)) = rc(λ0, δ
∗(c)) + o(c) as c→ 0,

where δ∗(c) is a Bayes solution with respect to λ0 and c. Furthermore, if {δ(c)} is a
family of GSLRT’s defined by (1) with γ = c

√
log c−1, then

rc(λ0, δ(c)) = rc(λ0, δ
∗(c)) +O(c) as c→ 0

for every W satisfying (A1) and every λ0 positive and continuous on [a1, b1] ⊂ [a, b]
satisfying (a1, b1) ⊃ [θ0, θ1].

Proof: Let τ(c) = min(N(c), N∗(c)). Conditioning on Fτ(c),

rc(λ0, δ(c))− rc(λ0, δ∗(c)) = Eλ0
(
rc(λτ(c), δ(c))− rc(λτ(c), δ∗(c))

)
≤ Pλ0(λτ(c) ∈ B̃(c))Eλ0

[
rc(λτ(c), δ(c))− rc(λτ(c), δ∗(c))

∣∣λτ(c) ∈ B̃(c)
]

+ Pλ0(λτ(c) 6∈ B̃(c))Eλ0

[
rc(λτ(c), δ(c))− rc(λτ(c), δ∗(c))

∣∣λτ(c) 6∈ B̃(c)
]
, (71)

where B̃(c) = the set of λs,t’s such that θ̂(s, t) ∈ (b0,−b1) ∪ (b1, b2) and r(λs,t) ≤ M∗c
for [b0,−b1] ⊂ (a, 0), [b1, b2] ⊂ (0, b).

Noting that r(λτ(c)) ≤ M∗c, it is clear that rc(λτ(c), δ(c)) ≤ 2M∗c, since the risk
of error is at most M∗c and the integrated sampling cost is at most what would be
required to reduce the stopping risk by a factor of M∗ – and the latter is less than
M∗c by the proof of Lemma 3. Using this upper bound on the posterior risk of δ(c)
at time τ(c) and applying Lemma 5 and its negative θ analog to deal with the case
λτ(c) ∈ B̃(c), (71) yields

rc(λ0, δ(c))− rc(λ0, δ∗(c)) ≤ 2M∗cPλ0(λτ(c) 6∈ B̃(c)) + o(c),

so that
rc(λ0, δ(c))− rc(λ0, δ∗(c)) = o(c), (72)

once it is shown that

lim sup
c→0

Pλ0(λτ(c) 6∈ B̃(c)) ≤ 2{1− λ0((b0,−b1) ∪ (b1, b2))}, (73)

b0, b1, and b2 being arbitrarily close to a, 0, and b, respectively.
To prove (73), note that by an argument similar to (50) it can be shown that for

ε > 0
Pθ(|Sn − nψ′(θ)) ≥ nε+A for some n ≥ 1)→ 0 as A→∞,
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uniformly for θ ∈ [b3, b4] ⊂ (b1, b2). Combine with the fact that for some η > 0

max(|Sτ(c)|, τ(c)) ≥ η log c−1

for sufficiently small c, easily verified along the lines of (22) and the sentence following
it, to conclude that

Pλ0(λτ(c) 6∈ B̃(c))→ 0 as c→ 0,

uniformly on any subinterval [b3, b4] of (b1, b2). Using this and a similar relation for
negative θ, (73) follows routinely and, hence, (72) is proved. The proof of the first part
of the theorem will he completed by showing that

rc(λ0, δ̂(c)) ≤ rc(λ0, δ(c)) + o(c). (74)

Comparing the definitions of δ(c) and δ̂(c), it is easy to see that G0 and G1 are
larger than 1 when max(|s|, t) is sufficiently large. Hence, for sufficiently small c the
continuation region of δ(c) contains that of δ̂(c), so that the sample sizes of the latter
are less than or equal to those of δ(c). Furthermore, for θ ≤ θ0

Pθ(δ̂(c) rejects θ ≤ θ0)− Pθ(δ(c) rejects θ ≤ θ0) ≤ Pθ(θ̂N̂(c)
= b)

and, using the definition of δ̂(c) and the concavity of the log-likelihood function,

Pθ(θ̂N̂(c)
= b) ≤ Pθ

(
fθ0n
fbn
≤ γ and θ̂n = b for some n ≥ 1

)

≤ Pθ

(fθ0n
fbn

) b−θ0
b−θ
≤ γ for some n ≥ 1


≤ γ

b−θ
b−θ0

where γ = c
√

log c−1/L(b, θ0)H0(b). Thus,∫ θ0

a

{
Pθ(δ̂(c) rejects θ ≤ θ0)− Pθ(δ(c) rejects θ ≤ θ0)

}
λ0(θ)W (θ)dθ

≤ max
[a,θ0]

(λW ) · b− θ0
log γ−1

· γ ≤ const.

(
c√

log c−1

)
.

Using a similar result for θ ≥ θ1 as well as the comparison of sample sizes made above,
(74) is established and the first part of the theorem is proved.

To prove the O(c) part of the theorem, it will suffice to show that for the Bayes
decision problem on [a1, b1] specified by W and λ0,

δ(c) has O(c) error risk (75)

and the stopping rule N(c) of δ(c) satisfies

N(c) ≤ T (Qc) for some Q > 0 (76)

where T (γ) stops when the stopping risk is less than or equal to γ. To see that (75)
and (76) suffice, observe that the proof of Lemma 3 requires only trite changes if the
continuation considered is changed from T (c) to T (Qc). Hence, there is an M∗ > 1 such
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that if the stopping risk equals M∗c, then it pays to continue via T (Qc). Evidently the
cost of reducing the stopping risk by a factor of M∗/Q is less than M∗c and, therefore,

EλT (M∗c) [T (Qc)− T (M∗c)] ≤M∗

because at time T (M∗c) continuing via T (Qc) takes no longer than reducing the stop-
ping risk by a factor of M∗/Q. Taking the a priori expectations of both sides of the
last relation yields

Eλ0T (Qc)− Eλ0T (M∗c) ≤M∗,

whence by (76) and the fact that the Bayes stopping rule, N∗(c), stops no sooner than
T (M∗c),

Eλ0N(c)− Eλ0N∗(c) ≤M∗.

This relation and (75) imply that δ(c) is indeed O(c)-Bayes.
The proof will be completed by showing that the GSLRT δ(c) satisfies the sufficient

conditions (75) and (76). To prove (75), it suffices to show that

δ(c) has O(c) error risk with respect to λ, (77)

where λ is the uniform density on [a, b]. (The loss function W defined on [a1, b1] is
understood to be extended to [a, b], if necessary, so as to still satisfy (A1).) Note that
(77) implies (75) because of∫ θ0

a1

Pθ(δ(c) errs)λ0(θ)W (θ)dθ ≤ (maxλ0)(b− a)

∫ θ0

a1

Pθ(δ(c) errs)λ(θ)W (θ)dθ

and a similar relation for [θ1, b]. Now, the modification δ(c) of δ(c) that uses the
correction factors G0 and G1 when s/t is outside [ψ′(a), ψ′(b)] approximates the λ
stopping risk to within O(1) and has an Mc upper bound on the λ posterior risk of its
terminal decision, just as in the first part of the proof. Also, the same argument used
for (74) shows that the λ error risk of δ(c) is at most o(c) larger than that of δ(c), and
(77) follows, proving (75).

To prove (76), replace h0, h1 by a lower bound d > 0 in (1) and note that this
change cannot decrease the sample size. This GSLRT with constant d on [a, b] stops
no later than one restricted to [a1, b1] with the same constant. Finally, the latter rule
is seen to stop no later than some T (Qc), by comparing it with a G0, G1-modification,
using the fact that the factors G0 and G1 have positive lower bounds. Thus, (76) is
established and the proof of Theorem 1 is complete.

Remarks.

1. Results like those in Theorem 1 can be obtained for different W ’s, e.g. W van-
ishing at θ0 and θ1 with positive one-sided derivatives, W ′(θ0) and W ′(θ1). The
asymptotics leading to (18) extend straightforwardly and lead in the case just
mentioned to replacing W (θ0) by W ′(θ0) and squaring the denominator in the
final expression in (18). This leads to GSLRT’s with γ = c(log c−1)3/2 (as in
Fushimi’s work) and hi(θ) multiplied by |ψ′(θ̂)− ψ′(θi)|/I(θ̂, θi), with W ′(θi) re-
placing W (θi).

2. The choice of h0, h1 for the o(c)-Bayes GSLRT’s is quite possibly discontinuous
at θ̂ = 0, i.e. the upper and lower stopping boundaries meet the t-axis at differ-
ent points (whose distance is constant for all c). It is easy to see that if both
boundaries are extended by extending the definition of H0(θ̂) to include negative
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θ̂ and similarly extending H1(θ̂), then the boundaries intersect always within a
strip |s| ≤ s1 as c → 0. Using the intersecting stopping boundaries and any ter-
minal decision rule that agrees with sgn s outside the strip (e.g. one based on the
ray from the origin to the point of intersection) is still o(c)-Bayes because such a
procedure satisfies the sufficient conditions in the remark following Corollary 2.

The next corollary is in the spirit of Schwarz’s (1962) results on asymptotic shapes
of Bayes continuation regions. For given λ0, let B∗(c) denote the region of the (t, s)
plane where the (Bayes) continuation risk is less than the stopping risk. Following
Schwarz, we consider the intersection of this region with the rays {(t, s)| s = tψ′(θ̂)},
a ≤ θ̂ ≤ b. Let (B∗(θ̂, c), ψ′(θ̂)B∗(θ̂, c)) denote a boundary point of B∗(c) on the θ̂ ray.
It is also helpful to define for arbitrary g on [a, b]

R(g(θ̂)) = {(t, s)| r(λs,t) > g(θ̂(s, t))}.

Corollary 1. Under (A1) and (A2), as c→ 0

B∗(θ̂, c) = A(θ̂) +B(θ̂)

(
log c−1 − 1

2
log log c−1

)
+O(1) (78)

uniformly for a ≤ θ̂ ≤ b, and with o(1) in place of O(1) uniformly for θ̂ ∈ [a+ ε,−ε]∪
[ε, b− ε], ε > 0, where

A(θ̂) =

{
I(θ̂, θ0)

−1 logL(θ̂, θ0)H0(θ̂) if θ̂ ≥ 0

I(θ̂, θ1)
−1 logL(θ̂, θ1)H1(θ̂) if θ̂ < 0

B(θ̂) =

{
I(θ̂, θ0)

−1 if θ̂ ≥ 0

I(θ̂, θ1)
−1 if θ̂ < 0.

Remarks. O(1) approximation of B∗(c) in the region where s/t 6∈ [ψ′(a), ψ′(b)] is
obtainable using Lemma 3 and (25).

Proof: It suffices to consider θ̂ ≥ 0 since the other case is similar. Since

log `0(tψ
′(θ̂), t)−1 = tI(θ̂, θ0),

the O(1) relation follows at once from (22) and the fact that R(M∗c) ⊂ B∗(c) ⊂ R(c).
The o(1) result requires the application of Lemma 5 and the companion fact (whose
proof is essentially the same) that for λ = λs,t ∈ B1(c) the (Bayes) continuation risk
equals

cR1(θ̂, c
−1r(λ)) + o(c),

where R1 is defined like R but with the restriction N ≥ 1 in place of N ≥ 0. Note
that v−1R1(θ̂, v) is obviously strictly decreasing in v. Thus, letting L = L(θ̂, θ0), if
v < ρ−1L−1 for some ρ > 1, then

v−1R1(θ̂, v) ≥ ρLR1(θ̂, (ρL)−1) > LR1(θ̂, L
−1) + L(ρ− 1) = 1 + L(ρ− 1),

so that R1(θ̂, v) ≥ (1 + η)v, where η > 0 and is independent of θ̂. Therefore, if
1 < c−1r(λ) < (ρL(θ̂, θ0))

−1, then

cR1(θ̂, c
−1r(λ))− r(λ) ≥ ηr(λ) > ηc,
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whence the evaluation of the continuation risk above shows it to be greater than the
stopping risk. Extending this, there evidently exists a ρ(c) ↓ 1 as c ↓ 0 such that
continuation does not pay if (t, s) ∈ B1(c) and 1 < c−1r(λs,t) < (ρL(θ̂, θ0))

−1 (and

certainly not if c−1r(λ) ≤ 1). Using the fact that r(λ) < c/L(θ̂, θ0) implies r(λ) ≤M∗c,
it follows that

B∗(c) ⊂ R

(
c

ρ(c)L(θ̂, θ0)

)
in the sector ε ≤ θ̂ ≤ b− ε. (79)

By a similar argument using the evaluation of the Bayes risk in Lemma 5, the
latter is shown to be less than the stopping risk if (t, s) ∈ B1(c) and c−1r(λs,t) >

ρ(c)L(θ̂, θ0)
−1, for some ρ(c) ↓ 1 as c ↓ 0, which together with Lemma 3 establishes

B∗(c) ⊃ R

(
cρ(c)

L(θ̂, θ0)

)
in the sector ε ≤ θ̂ ≤ b− ε. (80)

(The function ρ(c) can obviously be chosen to satisfy both (79) and (80).) To complete
the proof, it is straightforward to derive the o(1) version of (78) from (79) and (80)
using (25).

A variety of sequential procedures can be shown to attain the Bayes risk to within
o(c), like δ(c) and δ̂(c), using the following result.

Corollary 2. Under (A1) and (A2), the following set of conditions is sufficient for
a family of tests, {δ̃(c)}, with continuation regions, B̃(c), to attain the Bayes risk to
within o(c) as c→ 0:

(i) B̃(c) ⊂ R(K1c) for some K1 > 0.

(ii) B̃(c) ⊃ R(K2c) for some K2 > 0.

(iii) There is an s∗ such that δ(c) chooses a terminal decision according to sgn(Sn)
whenever |Sn| > s∗ upon stopping.

(iv) Given ε > 0 there is a ρ(c) ↓ 1 as c ↓ 0 such that

R

(
cρ(c)

L(θ̂)

)
⊂ B̃(c) ⊂ R

(
c

ρ(c)L(θ̂)

)

in the region {θ̂ ∈ (a+ε,−ε)∪(ε, b−ε)}, where L(θ̂) = L(θ̂, θ0) if θ̂ ≥ 0, = L(θ̂, θ1)
if θ̂ < 0.

Remark: Letting D(c) denote the continuation region of δ(c), it can be shown using
relation (25) and its analog for negative θ that an equivalent set of conditions is obtained
by using D instead of R in (i) and (ii) and changing the inclusions in (iv) to

(iv)′ D(cρ(c)) ⊂ B̃(c) ⊂ D(cρ(c)−1).

Also, letting D̂(c) denote the continuation region of δ̂(c), it suffices to use in place of
(ii)

(ii)′ B̃(c) ⊃ D̂(K2c) for some K2 > 0.

Proof of Corollary 2: By a routine argument using (24) and its analog for negative θ
the ratio of the posterior risks Y0(s, t) and Y1(s, t) is shown to be bounded in every
strip |s| ≤ s∗. Therefore, conditions (ii) and (iii) suffice to guarantee that the posterior
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risk of the terminal decision made by δ̂(c) is at most a constant times c. Examination
of the argument leading to (72), which establishes the o(c)-optimality of δ(c), shown
that properties (i), (ii), and (iv) together with the upper bound on the posterior risk
of the terminal decision are sufficient.

The fact that (ii)′ in place of (ii) suffices is clear from the argument for (74).
It is easy to define families of o(c)-Bayes procedures using Corollary 2 and the

asymptotic relations of Section 1, For the examples which follow, only the definition of
the upper boundary is given, i.e. the condition for stopping and rejecting θ ≤ θ0 when
θ̂ ≥ 0, it being understood that a similar rule is used to reject θ ≥ θ1 when θ̂ < 0.

(i)

fθ0n
f
θ̂n

√
log

f
θ̂n

fθ0n
≤ h0(θ̂)c log c−1

(ii)

Y0(Sn, n) ≤ c

L(θ̂, θ0)

(iii)

Ỹ0(Sn, n) ≤ c

L(θ1, θ0)
where

Ỹ0 is defined with respect to the prior

λ̃0(θ) =
λ0(θ)

L(θ)
∫ b
a
λ0(y)
L(y) dy

and L(θ) = L(θ, θ0) if θ ≥ 0, = L(θ, θ1) if θ < 0.

(iv)

λ0(θ0)W (θ0) ≤ (c log c−1)h∗(θ̂)

∫ b

0

fθn
fθ0n

λ0(θ)dθ,

where h∗(θ̂) = |ψ′(θ̂) − ψ′(θ∗)|/I(θ̂, θ∗)L(θ̂, θ∗), θ∗ = θ0 if θ̂ ≥ 0, = θ1 if θ̂ < 0.
(For (iv), note that (26) still holds for s ≥ 0 if the denominator of `0(s, t) is
redefined by integrating over [0, b] rather than [a, b]. This is because the ratio of
the integral over [0, b] to that over [a, 0] is increasing in s, goes to infinity with t
uniformly for s/t ≥ ε > 0 and, for s ≥ 0 is bounded away from zero for all t ≥ 1.)

A final example is the mixture stopping rule

(v)

λ0(θ0)W (θ0) ≤ (c log c−1)h∗(θ0)

∫ b

0

fθn
fθ0n

λ0(θ)dθ,

where
λ0(θ) = λ0(θ)h

∗(θ) (normalization optional).

In each of the above examples, one can use intersecting (extended) boundaries as
discussed in the second remark following the proof of Theorem 1. In particular the
procedure of example (iii) can be modified to “stop when the λ-stopping risk is less
than or equal to c/L(θ0, θ1)”, with terminal decision based on minimizing the λ̃0 or λ0
version of the posterior risk – or simply on sgn(s).
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3 Boundary-crossing and error probabilities

The following extension of relation (26) of Lai and Siegmund (1977) is the key result.

Theorem 2. Suppose g(·) is continuous and positive on [0, b] and ν is non-lattice.
Then as ξ ↓ 0 the following are asymptotic:

P0(ξ) = ξ

∫ b

0

L(θ, θ0)

I(θ, θ0)
g(θ)dθ,

P1(ξ) = Pθ0

(
fθ0n ≤ ξ

∫ b

0
fθng(θ)dθ for some n ≥ 1

)
,

P2(ξ) = Pθ0

(
fθ0n ≤ ξ(log ξ−1)−1/2g(θ+n )Q(θ+n )fθ+n n for some n ≥ 1

)
,

where Q(θ) = (2πI(θ, θ0)/ψ
′′(θ))1/2 and θ+n = (θ̂n)+, the maximum likelihood estimator

restricted to [0, b].
Furthermore, if g(θ) = λ0(θ)h(θ), where λ0 and h are continuous and positive on

[0, b], then all of the above are asymptotic to

P3(ξ) = Pθ0

(
fθ0n ≤ ξh(θ+n )

∫ b

0
fθnλ0(θ)dθ for some n ≥ 1

)
.

Proof: The fact that P1(ξ) ∼ P0(ξ) is expressed (in different notation) in relation (26)
of L-S (Lai and Siegmund, 1977), which obviously holds for finite measures as well as
probabilities. Let Pg denote the g-mixture of Pθ’s, and

An(ξ) =

{
fθ0n ≤ ξ

∫ b

0
fθng(θ)dθ and θ+n 6∈ (0, b)

}
, n = 1, 2, . . . .

Then, making the usual estimate (see L-S),

Pθ0

( ∞⋃
n=1

An(ξ)

)
≤ ξPg

( ∞⋃
n=1

An(ξ)

)
= o(ξ) as ξ ↓ 0, (81)

because Pg(∪An) → 0 by an argument like the one for (73). Using (81) and the fact
that P1(ξ) ∼ P0(ξ) is of order ξ,

P1(ξ) ∼ Pθ0
{
fθ0n ≤ ξ

∫ b

0
fθng(θ)dθ and θ+n ∈ (0, b) for some n ≥ 1

}
. (82)

Consider the event in braces in (82) and note that the inequality there cannot occur
for small ξ unless max(Sn, n) is large. It follows that (16) can be applied (with a = 0
and λ0 = g) and, using the fact that nI(θ+n , θ0) = log(fθ+n+n/fθ0n) when 0 ≤ θ+n ≤ b,
one obtains

P1(ξ) ∼ Pθ0
{
fθ0n ≤ ξQ(θ+n )g(θ+n )(log fθ+n+n/fθ0n)−1/2Φ̃(n, θ+n )

and θ+n ∈ (0, b) for some n ≥ 1
}
,

where Φ̃(m, θ) = (
√
mψ′′(θ) min(b− θ, θ)). Since gQΦ̃ is bounded away from 0 and∞,

the last relation leads easily to

P1(ξ) ∼ Pθ0
(
fθ0n ≤ ξ(log ξ−1)−1/2Q(θ+n )g(θ+n )Φ̃(n, θ+n )fθ0n

and 0 < θ+n < b for some n ≥ 1
)
. (83)
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Since Φ̃ ≤ 1, (83) and P1(ξ) ∼ P0(ξ) imply

P0(ξ) . P2(ξ), (84)

where “.” means that as ξ ↓ 0 the lim sup of the ratio of P0 to P2 is at most 1.
Fix m and in the derivation of (83) replace g(θ) by g(θ)/Φ̃(m, θ), denoting the new

P0 and P1 by P̃0(ξ) and P̃1(ξ). Then the following analog of (83) is obtained:

P̃1(ξ) ∼ Pθ0
(
fθ0n ≤ ξ(log ξ−1)−1/2Q(θ+n )g(θ+n )Φ̃(m, θ+n )−1Φ̃(n, θ+n )fθ+n n

and 0 < θ+n < b for some n ≥ 1
)
.

It follows that

P̃1(ξ) & Pθ0

(
fθ0n ≤ ξ(log ξ−1)−1/2Q(θ+n )g(θ+n )fθ+n n and 0 < θ+n < b

for some n ≥ 1) (85)

because Φ̃(n, θ) is increasing in n and for sufficiently small ξ the event on the right-
hand side of (85) cannot occur unless n ≥ m (the conditions n < m and 0 < θ+n < b
obviously implying a positive lower bound on fθ0n/fθ+n n).

It is clear that the right-hand side of (85) is smaller than P2(ξ) by at most the
following (two-term) sum∑

θ=0,b

Pθ0

(
fθ0n ≤ ξ(log ξ−1)−1/2Q(θ)g(θ)fθn for some n ≥ 1

)
,

which is clearly of order ξ(log ξ−1)−1/2 by the usual estimate. Since P2(ξ) itself is of
order at least ξ by (84), evidently the right-hand side of (85) is asymptotic to P2(ξ)
and, using P̃1(ξ) ∼ P̃0(ξ),

P̃0(ξ) & P2(ξ). (86)

Comparing the definitions of P̃0(ξ) (based on g(θ)/Φ̃(m, θ)) and P0(ξ) (based on
g(θ)), note that as m→∞, Φ̃(m, θ)→ 1 on (0, b), whence∫ b

0

L(θ, θ0)

I(θ, θ0)

g(θ)

Φ̃(m, θ)
dθ →

∫ b

0

L(θ, θ0)

I(θ, θ0)
g(θ)dθ

by the bounded convergence theorem. Since (86) holds for every m, letting m → ∞
shows that P0(ξ) & P2(ξ) and, the reverse having been established in (84), P0(ξ) ∼
P2(ξ).

The fact that P3(ξ) ∼ P1(ξ) if g(θ) = λ0(θ)h(θ) is an easy consequence of the
relation ∫ b

0

fθn
fθ0n

λ0(θ)h(θ)d(θ) ∼ h(θ+n )

∫ b

0

fθn
fθ0n

λ0(θ)d(θ)

which holds uniformly as max(Sn, n) → ∞ by (16), and also holds as either side
becomes infinite (since this requires max(Sn, n) → ∞). This completes the proof of
Theorem 2.

Remark: By choosing g(·) so that g times Q equals an arbitrary continuous positive
function on [0, b], one can obtain from the relation P2(ξ) ∼ P0(ξ) the asymptotic
evaluation of the probability of crossing a certain class of boundaries in the (n, Sn)
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plane. The result can, of course, be shifted from [0, b] to an arbitrary closed subinterval
of the interior of the natural parameter space. This class of boundaries has segments
outside the sector where 0 < θ̂ ≤ b which are straight lines. Within the sector, variation
of the choice of g produces O(1) deformation of the boundaries. Note that the same
class of boundaries is obtained from mixture stopping rules supported on [0, b].

The asymptotic evaluation of error probabilities comes from

Corollary 3. Under (A1) and (A2), the GSLRTs defined by (1) with γ = c
√

log c−1

satisfy

Pθ0(reject θ ≤ θ0) ∼ c log c−1
∫ b

0

L(θ, θ0)

I(θ, θ0)

h(θ)

Q(θ)
dθ

as c→ 0 provided that ν is non-lattice. A similar relation holds for Pθ1(error).

Proof: Let A and B denote the upper and lower boundaries, respectively, of the GSLRT.
Using Theorem 2 and its proof along with (1),

Pθ0(ever cross B) = Pθ0

(
fθ0n ≤ c

√
log c−1h(θ̂n)f

θ̂nn
and θ̂n ≥ 0 for some n ≥ 1

)
∼ c log c−1

∫ b

0

L(θ, θ0)

I(θ, θ0)

h(θ)

Q(θ)
dθ, (87)

and it clearly suffices to show that

Pθ0(cross B after crossing A) = o(c log c−1). (88)

Using (16) for a = 0 as was done in the proof of Theorem 2, it is clear that in the
region of the (n, Sn) plane where fθ0n ≤ c

√
log c−1h(θ̂n)f

θ̂nn
and θ̂n ≥ 0, the mixed

likelihood ratio ∫ b

0

L(θ, θ0)

I(θ, θ0)

h(θ)

Q(θ)
dθ

is bounded below by η(c log c−1), where η > 0. Hence, by considering the time of first
crossing B,

Pθ0(cross B after crossing A) ≤ η−1c log c−1Ph/Q(cross B after crossing A), (89)

where the probability on the right-hand side is the h/Q miture of Pθ’s.
Now, for 0 < ε < b,

Ph/Q(cross B after crossing A) ≤
∫ ε

0

h

Q
+

∫ b

ε

h(θ)

Q(θ)
Pθ(cross B after crossing A)dθ

≤
∫ ε

0

h

Q
+

∫ b

ε

h(θ)

Q(θ)
Pθ(ever cross A)dθ

.
∫ ε

0

h

Q
as c→ 0, (90)

since for θ ≥ ε the probability of ever crossing A can be shown to go to zero with
c uniformly and exponentially, as in the argument for (73). Since ε can be chosen
arbitrarily small in (90), (89) and (90) imply (88), proving the corollary.

Remark: The same asymptotic formula for error probabilities applies to all the exam-
ples of o(c)-Bayes procedures satisfying Corollary 2 of Section 2. The derivations are
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obtained straightforwardly by approximating their boundaries from above and below
by those of δ̂(c)’s or mixture stopping rules and applying Theorem 2. The argument
that the lower boundary is asymptotically negligible proceeds as in the proof for δ̂(c)
given in the corollary above. An asymptotic evaluation of error probabilities was ob-
tained by Woodroofe (1976) for Schwarz’s parabolic boundaries for testing the mean
drift of a Wiener process.
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