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Summary: A general framework is proposed for Bayesian model-based designs of Phase I cancer

trials, in which a general criterion for coherence (Cheung, 2005) of a design is also developed. This

framework can incorporate both “individual” and “collective” ethics into the design of the trial. We

propose a new design which minimizes a risk function composed of two terms, with one representing

the individual risk of the current dose and the other representing the collective risk. The performance

of this design, which is measured in terms of the accuracy of the estimated target dose at the end

of the trial, the toxicity and overdose rates, and certain loss functions reflecting the individual and

collective ethics, is studied and compared with existing Bayesian model-based designs and is shown

to have better performance than existing designs.
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1. Introduction

A Phase I trial for a new treatment is generally intended to determine a dose to use in

subsequent Phase II and III testing. Phase I cancer trials have the additional complexity

that the treatment in question is usually a cytotoxic agent and the efficacy usually increases

with dose, and therefore it is widely accepted that some degree of toxicity must be tolerated to

experience any substantial therapeutic effects. Hence, an acceptable proportion p of patients

experiencing dose limiting toxicities (DLTs) is generally agreed on before the trial, which

depends on the type and severity of the DLT; the dose resulting in this proportion is thus

referred to as the maximum tolerated dose (MTD). In addition to the explicitly stated

objective of determining the MTD, a Phase I cancer trial also has the implicit goal of safe

treatment of the patients in the trial. However, the aims of treating patients in the trial and

generating an efficient design to estimate the MTD for future patients often run counter to

each other. Commonly used designs in Phase I cancer trials implicitly place their focus on

the safety of the patients in the trial, beginning from a conservatively low starting dose and

escalating cautiously. Escalation is further slowed by the assignment of the same dose to

groups of consecutive patients, as in the widely used 3-plus-3 design, which is convenient to

administer and shortens trial duration by simultaneously following patients in groups of 3.

Von Hoff and Turner (1991) have documented that the overall response rates in these Phase I

trials are low, and substantial numbers of patients are treated at doses that are retrospectively

found to be non-therapeutic. Moreover, as pointed out by O’Quigley, Pepe and Fisher (1990),

these designs are very inefficient for estimating the MTD, which is implied by the 3-plus-3

design to correspond to the case p = 1/3. They proposed a Bayesian model-based design,

called the “continual reassessment method” (CRM), to choose the dose levels sequentially,

making use of all past data at each stage.

More than ninety new Phase I methods were published between 1991 and 2006 (Rogatko, Schoeneck, Jonas,
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2007), and there have been several reviews of the new methods (e.g., Rosenberger and Haines,

2002). In this paper we focus on Bayesian model-based designs and Section 2 describes a

general framework to develop and analyze them. As shown in Sections 2 and 3, this framework

allows one to incorporate the competing aims of a Phase I cancer trial by choosing the loss

function accordingly. It also enables one to derive certain desirable properties of the design,

such as coherence (Cheung, 2005), from the loss function, or to enforce them by using simple

reformulations in this framework. Section 4 provides implementation details and gives a

simulation study comparing Bayesian designs that correspond to different loss functions in

the setting of a colon cancer trial considered by Babb, Rogatko and Zacks (1998).

2. Posterior Distributions, Loss Functions and Sequential Dose Determination

A commonly used model-based approach to Phase I cancer clinical trial design assumes the

usual logistic regression model for the probability Fθ(x) of DLT at dose level x:

Fθ(x) = 1/(1 + e−(α+βx)), (1)

in which β > 0 and θ = (α, β) is unknown and to be estimated from the observed pairs (xi, yi),

where yi = 1 if the ith subject, treated at dose xi, experiences DLT and yi = 0 otherwise.

The frequentist approach to inference on θ uses the likelihood function and estimates θ by

maximum likelihood, while the Bayesian approach assumes a prior distribution of θ and uses

the posterior distribution for inference on θ.

Denote the MTD by η = F−1
θ (p) and the posterior distribution of θ based on (x1, y1), . . . , (xk, yk)

by Πk, and let Π0 denote the prior distribution. The Bayes estimate of η with respect to

squared error loss is the posterior mean EΠk
(η), and the CRM proposed by O’Quigley, Pepe and Fisher

(1990) uses this posterior mean to set the dose for the next patient, i.e., xk+1 = EΠk
(η).

Instead of the posterior mean, Babb, Rogatko and Zacks (1998) proposed to set xk+1 equal

to the ω-quantile of the posterior distribution, where 0 < ω < 1/2 is chosen to be slightly less
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than p in their examples. This design is called “escalation with overdose control” (EWOC)

and ω is called the “feasibility bound.” A sequence of doses xn is called “Bayesian feasible”

at level 1 − ω if PΠn−1
(η > xn) > 1 − ω for all n > 1, and the EWOC doses are optimal

among Bayesian-feasible ones; see Zacks, Rogatko and Babb (1998).

Note that the dose for the nth patient in CRM or EWOC depends only on the posterior

distribution Πn−1, i.e., xn is a functional f(Πn−1) of Πn−1. This functional defines {Πk : k >

0} as a Markov chain whose states are distributions on the parameter space Θ and whose

state transitions are given by the following.

Bayesian updating scheme: Given current state Π (which is a prior distribution of θ), let

x = f(Π) and generate first θ from Π and then y ∼ Bern(Fθ(x)). The new state is the

posterior distribution of θ given (x, y).

The functional x = f(Π) for CRM is EΠ(η), which minimizes the expected squared error

loss EΠ[(η−x)2]. As pointed out by Babb, Rogatko and Zacks (1998), the symmetric nature

of the squared error loss may not be appropriate for modeling the toxic response to a cancer

treatment. Instead of squared error loss, EWOC with feasibility bound ω uses the functional

x = x(Π) that minimizes the asymmetric loss function EΠ[ℓ(η, x)], where

ℓ(η, x) =





ω(η − x), if x 6 η

(1− ω)(x− η), if x > η.

(2)

More generally, we can consider other loss functions ℓ(θ, x) and define x(Π) that attains

minx EΠ[ℓ(θ, x)]. In particular, the following example gives a response-based version of EWOC.

Example 1: Inverted overdose control. The EWOC loss function (2) penalizes an overdose

x > η by the amount (1 − ω)(x − η), and an under-dose x < η by the amount ω(x − η).

However, a dose x deemed “too large” on this scale may actually correspond to a probability

of DLT not much larger than the target rate p depending on the dose-response curve, making

x a relatively desirable dose. Likewise, a small value of |x− η| may correspond to a large
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discrepancy between the actual DLT probability Fθ(x) and p. Hardwick and Stout (2001)

suggest to measure the excess/deficit of the DLT rate on the “probability scale.” Taking

0 < γ < 1/2, this leads to the “inverted” loss function

ℓ(θ, x) =





γ(p− Fθ(x)), if x 6 η

(1− γ)(Fθ(x)− p), if x > η.

(3)

Remark: The loss when the dose falls below η, measured by the difference ω(η−x) in (2) and

γ(p−Fθ(x)) in (3), should ideally be measured by the difference in response rates at η and x,

respectively, when efficacy data, taking the value 1 if the patient responds to the treatment

and 0 otherwise, are also available besides the toxicity data. Note, however, that this involves

bivariate efficacy-toxicity data. While many existing designs solely consider toxicity outcomes

and the MTD, designs that incorporate efficacy responses as well have been proposed by a

number of authors, including Li, Durham and Flournoy (1995), Hardwick and Stout (2001),

Kpamegan and Flournoy (2001), Thall and Cook (2004), Dragalin and Fedorov (2006), Dragalin, Fedorov

(2008), and Pronzato (2010). When efficacy responses are available, the minimum effective

dose (MED) is of interest, i.e., the lowest dose at which some desired proportion of positive

efficacy responses is attained. When both efficacy and toxicity data are available, the optimal

safe dose, which is the dose between the MED and the MTD maximizing the probability of

simultaneous efficacy and non-toxicity, is of interest. Since this paper focuses on univariate

toxicity data, we consider elsewhere better alternatives to (3) for x 6 η that also require

efficacy data.

Noting that the explicitly stated objective of a Phase I cancer trial is to estimate the MTD,

Whitehead and Brunier (1995) considered Bayesian sequential designs that are optimal, in

some sense, for this estimation problem. Haines, Perevozskaya and Rosenberger (2003) made

use of the theory of optimal design of experiments (Fedorov, 1972; Atkinson and Donev,

1992; Dette, Melas and Pepelyshev, 2004) to construct Bayesian c- and D-optimal designs,
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and further imposed a relaxed Bayesian feasibility constraint on the design to avoid highly

toxic doses. Optimal design theory involves a design measure ξ on the dose space X , and

a sequential design updates the empirical design measure ξn−1 at stage n by changing it to

ξn with the addition of the dose xn. The empirical measure ξn of the doses x1, . . . , xn up

to stage n can be represented by ξn = n−1
∑n

i=1 δxi
, where δx is the probability measure

degenerate at x. We let ||ξ|| denote the number of xi (not necessarily distinct) in the support

of ξ. Thus ||ξn|| = n and ||ξ0|| = 0, with ξ0 being the zero measure on X . To include the

construction of sequential Bayesian optimal designs as a special case of our general approach,

we can modify the preceding procedure that minimizes EΠ[ℓ(θ, x)] to choose the next dose

based on the current posterior distribution Π, by including the current design measure ξ in

the loss function.

Example 2: Bayesian c- or D-optimal designs.As described by Haines, Perevozskaya and Rosenberger

(2003), optimal design theory is concerned with choosing a design measure ξ to minimize a

convex function Ψ of the information matrix M(θ, ξ) =
∫
I(θ, x)dξ(x), where I(θ, x) is the

Fisher information matrix at design point x:

I(θ, x) =
eα+βx

(1 + eα+βx)2




1 x

x x2


 .

The convex function Ψ is associated with the optimality criterion, e.g., Ψ(M) = − log det(M)

for D-optimality and Ψ(M) = c′M−1c for c-optimality. Since θ = (α, β) is unknown,

the frequentist approach uses a sequential design that replaces θ in M(θ, ξt) by its max-

imum likelihood estimate at every stage t. The Bayesian approach puts a prior distribu-

tion Π0 on θ and minimizes
∫
Ψ(M(θ, ξt))dΠ0(θ). Noting that this Bayesian approach does

not accomodate the fact that patients are assigned doses sequentially in Phase I trials,

Haines, Perevozskaya and Rosenberger (2003, Section 5) propose to start the optimal design

after an initial sample of k patients so that the dose x of a patient after this initial sample



6 Biometrics, 000 2009

can be determined by minimizing

∫
Ψ ({kM(θ, ξk) + I(θ, x)}/(k + 1)) dΠk(θ), (4)

where ξk is the empirical measure of the initial sample of design points and Πk is the posterior

distribution of θ based on the initial sample.

We can easily extend our loss function approach to Bayes sequential designs by including ξ

as an argument of the loss function in this setting. Let Π be the current posterior distribution

of θ and ξ be the current empirical design measure. Define

ℓ(θ, x; ξ) = Ψ(M(θ, ξ+{x})), where ξ+{x} =
||ξ||ξ + δx
||ξ||+ 1

. (5)

The sequential Bayes optimal design chooses the next design level x that minimizes EΠℓ(θ, x; ξ).

The measure ξ+{x} in (5) represents the new empirical measure obtained by adding x to the

support of ξ, with ||ξ+{x}|| = ||ξ||+ 1. We can also impose a relaxed feasibility constraint in

the choice of x:

Minimize EΠℓ(θ, x; ξ) subject to PΠ(η̃ < x) 6 ω, (6)

as in Haines, Perevozskaya and Rosenberger (2003), where η̃ = F−1
θ (q) with q > p and ω

is a prescribed positive constant. If q = p, then η̃ = η and the constraint corresponds to

requiring the doses to be Bayesian feasible (see the description of EWOC above).

3. Coherence and Dilemma Between Individual and Collective Ethics

The preceding section has focused on determining the next dose by minimizing EΠ[ℓ(θ, x)],

where Π is the current posterior distribution and ℓ is a loss function incorporating the trial’s

main objective into the Bayes sequential design. In Example 2 we have shown how additional

information, such as the empirical measure of previous design points, can be included in the

minimization problem to determine the dose. The following subsections extend this idea to

address two important issues in Phase I cancer clinical trial designs.
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3.1 Coherence and Its Enforcement

Motivated by ethical concerns, Cheung (2005) introduced coherence principles for sequential

dose escalation or de-escalation. A dose sequence is said to be “coherent” if a higher (re-

spectively, lower) dose is not given to the next patient when the current patient experiences

(respectively, does not experience) DLT. In particular, CRM and EWOC are coherent and

the following theorem, whose proof is given in the Appendix, provides conditions for the

coherence of a Bayes sequential design that minimizes the posterior loss at every stage.

Theorem 1: Suppose that the dose space is a finite interval and that ℓ(η, x) is convex

in x for every fixed η. Assume that for fixed x > x′, ℓ(η, x)− ℓ(η, x′) is non-increasing in η.

Then the dose sequence xn = argminx EΠn−1
ℓ(η, x) is coherent.

Theorem 1 shows that CRM is coherent since ℓ(η, x) = (η − x)2 is convex and

ℓ(η, x)− ℓ(η, x′) = −2η(x− x′) + x2 − (x′)2

is non-increasing in η for x > x′. The loss function (2) associated with EWOC also satisfies the

assumption of Theorem 1, which therefore shows the coherence of EWOC. The loss functions

in Examples 1 and 2, however, may not satisfy the assumptions of Theorem 1. Moreover, a

modification of EWOC recommended by its proponents (Babb and Rogatko, 2004), in which

the feasibility bound is escalated throughout the trial from a low starting value to 1/2 at the

end of the trial, does not satisfy the assumptions of Theorem 1 and it indeed exhibits slight

incoherence in the simulation studies in Section 4. This can be understood by noting that,

toward the end of the trial, the posterior distribution does not change much from patient to

patient, and that an increase in the feasibility bound may overwhelm the slight downward

shift in the posterior following an outcome y = 0, causing a dose higher than the previous

to be assigned. Cheung (2005, p. 865) also found a certain two-stage modification of CRM

to be incoherent. On the other hand, we can enforce coherence by modifying xn = f(Πn−1)
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into xn = f(Πn−1, xn−1, yn−1), where

f(Π, x∗, y) =





argminx6x∗ EΠℓ(η, x) if y = 1,

argminx>x∗ EΠℓ(η, x) if y = 0.

(7)

3.2 Treatment of Current Patient versus Information for Future Patients

We have noted in Section 2 that CRM or EWOC treats the next patient at the dose x that

minimizes EΠ[ℓ(θ, x)] for ℓ(η, x) given by (η−x)2 or by (2), where Π is the current posterior

distribution. This is tantamount to dosing the next patient at the best guess of η, where

“best” means “closest” according to some measure of distance from η. On the other hand, a

Bayesian c- or D-optimal design aims at generating doses that provide most information, as

measured by the Fisher information matrix of a design measure, for estimating the dose-

toxicity curve to benefit future patients. To resolve this dilemma between treatment of

patients in the trial and efficient experimental design for post-trial parameter estimation,

Bartroff and Lai (2010) considered the finite-horizon optimization problem of choosing the

dose levels x1, x2, . . . , xn sequentially to minimize the “global risk”

EΠ0

[
n∑

i=1

h(η, xi) + g(η̂n, η)

]
, (8)

in which Π0 denotes the prior distribution of θ, h(η, xi) represents the loss for the ith patient

in the trial, η̂n is the terminal estimate of the MTD and g represents a terminal loss function.

The optimizing doses xi depend on n − i, where the horizon n is the sample size of the

trial, and therefore are not of the form xi = f(Πi−1) considered in Section 2. In terms of

“individual” and “collective” ethics, note that (8) measures the individual effect of the dose

xk on the kth patient through h(η, xk), and its collective effect on future patients through

∑
i>k h(η, xi) + g(η̂n, η).

By using a discounted infinite-horizon version of (8), we can still have solutions of the form

xi = f(Πi−1) for some functional f that only depends on Πi−1. Specifically, take a discount
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factor 0 < δ < 1 and replace (8) by

EΠ0

[
∞∑

i=1

h(η, xi)δ
i−1

]
(9)

as the definition of global risk. Note that this global risk measures the individual effect of the

dose xk on the kth patient through h(η, xk), and its collective effect on future patients through

∑
i>k h(η, xi)δ

i−k. This means the myopic dose xk that minimizes EΠk−1
[h(η, x)] for treating

the kth patient has to be perturbed such that it also helps to create a more informative

posterior distribution Πk that is used for dosing future patients. Note that (9) does not have

the term g(η̂n, η) appearing in the finite-horizon problem (8), but even without this term,

the global risk (9) still captures the collective effect of the doses, as indicated above. As we

have pointed out in Section 2, if xi is of the form f(Πi−1) for all i, then {Πk : k > 0} is a

Markov chain whose states are distributions of θ and undergo Markovian dynamics described

by the updating scheme for posterior distributions. In the context of the present problem

of minimizing (9), the optimal expected loss V (Π) at state Π (posterior distribution of θ)

satisfies Bellman’s dynamic programming equation

V (Π) = inf
x
EΠ{h(η, x) + δEΠV (Π+{x})}, (10)

where Π+{x} is the new posterior distribution of θ after (x, y) is observed, with y ∼ Bern(Fθ(x))

and θ ∼ Π; see the Bayesian updating scheme in Section 2. For finite-state controlled Markov

chains, iteration is a commonly used method to solve (10); see Bertsekas (2007, Section 1.3).

In the present case, not only is the state space infinite, but it is also infinite-dimensional

(space of all posterior distributions of θ), making dynamic programming intractable.

The main complexity of the infinite-horizon problem is that the dose x for the next patient

involves also consideration for future patients who will receive optimal doses themselves;

these future doses depend on the future posterior distributions. A simple way to reduce the

complexity is to consider two (instead of infinitely many) future patients. This amounts to

choosing the next dose x to minimize EΠℓ(η, x; Π) when the current posterior distribution
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of θ is Π, where

ℓ(η, x; Π) = h(η, x) + λEΠ{EΠ[h(η
′, x′)|x1 = x, y1]}, (11)

in which η′ = F−1
θ′ (p) with θ′ ∼ Π′, and Π′ and x′ are defined below. The first summand in (11)

measures the (toxicity) effect of the dose x on the patient receiving it. The second summand

considers the patient who follows and receives a myopic dose x′ which minimizes the patient’s

posterior loss; the myopic dose is optimal because there are no more patients involved in

(11). The effect of x on this second patient is through the posterior distribution Π′ that

updates Π after observing (x1, y1), with x1 = x. Since y1 is not yet observed, the expectation

outside the curly brackets is taken over y1 ∼ Bern(Fθ(x)), with θ ∼ Π. For example, when

implemented with h(η, x) given by the EWOC loss function (2), this proposal can be viewed

as a modification of EWOC since it utilizes its loss function but adds an additional term to

represent the effect on future patients.

Unlike 0 < δ < 1 in the discounted infinite-horizon problem, the choice of λ > 0 in (11)

can exceed 1 and reflects the balance between the collective ethics in generating information

for future patients and the individual ethics for the patient receiving the dose. Although

we use here a single patient to represent all patients following the one receiving the next

dose, because the posterior distributions also change successively, the doses are functionals

of these posterior distributions.

4. Implementation and a Simulation Study

In this section we first describe three main components in the implementation of the above

Bayesian sequential designs and then evaluate their performance in a simulation study.
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4.1 Updating the Posterior Distribution

Letting η denote the MTD and ρ = Fθ(xmin), we follow Babb, Rogatko and Zacks (1998) to

transform (α, β) in (1) to (ρ, η) via the formulas

α =
xmin log(p

−1 − 1)− η log(ρ−1 − 1)

η − xmin
,

β =
log(ρ−1 − 1)− log(p−1 − 1)

η − xmin

,

and therefore

α + βx =
(x− η) log(ρ−1 − 1)− (x− xmin) log(p

−1 − 1)

η − xmin

= G(x, ρ, η).

We assume that the joint prior distribution of (ρ, η) has density π(ρ, η) with support on

[0, p]× [xmin, xmax]. Therefore the Fk−1-posterior density of (ρ, η) is

πk−1(ρ, η) = C

k−1∏

i=1

[
1

1 + e−G(xi,ρ,η)

]yi [ 1

1 + eG(xi,ρ,η)

]1−yi

π(ρ, η), (12)

where

C−1 =

∫ xmax

xmin

∫ q

0

k−1∏

i=1

[
1

1 + e−G(xi,ρ,η)

]yi [ 1

1 + eG(xi,ρ,η)

]1−yi

π(ρ, η)dρdη.

The marginal Fk−1-posterior distribution of η is then
∫ p

0
πk−1(ρ, η)dρ, and the CRM and

EWOC doses based on Fk−1 are the mean and ω-quantile of this distribution, respectively.

4.2 Computation of EΠℓ(η, x) and its Minimizer in Sections 2 and 3.1

The integrals in (12) can be evaluated by using a numerical double-integration routine involv-

ing Gaussian quadrature in MATLAB. This can be used to evaluate EΠℓ(η, x) for a posterior

distribution Π. We can find the minimum of EΠℓ(η, x) over x by a grid search in [xmin, xmax],

or by using gradient descent if ℓ is smooth. For computation of the constrained Bayesian opti-

mal design (6), a constrained nonlinear optimization routine in MATLAB can be used in con-

junction with numerical integration, as outlined in Haines, Perevozskaya and Rosenberger

(2003, p. 593).
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4.3 Minimization of EΠℓ(η, x; Π) in Section 3.2

While MCMC or rejection sampling can be used to compute (11) for any candidate dose x,

importance sampling (e.g., Robert and Casella, 2004, Chapter 3.3) is a simple, robust alter-

native that takes advantage of the fact that just an expectation with respect to the posterior

distribution is needed. Letting Π0 denote the uniform distribution of the transformed coor-

dinates (ρ, η) over [0, p]× [xmin, xmax], we have

EΠℓ(η, x; Π) ≈ B−1
B∑

b=1

ℓ(ηb, x; Π)
π(ρb, ηb)

π0(ρb, ηb)
(13)

for large B, where (ρb, ηb), b = 1, . . . , B, are i.i.d. and generated from Π0. Letting Π+{x,y}

denote the posterior distribution obtained from Π by including (x, y) and letting x′ =

x′(Π+{x,y}), the nested expectation in (11) can be similarly approximated by using

EΠ[h(η
′, x′)|x1 = x, y] = EΠ+{x,y}

h(η′, x′) ≈ B−1
B∑

b=1

h(η′b, x
′)
π+{x,y}(ρ

′
b, η

′
b)

π0(ρ′b, η
′
b)

, (14)

PΠ(y = 1|x) =

∫
Fθ(x)dΠ(θ) ≈ B−1

B∑

b=1

Fθ′′
b
(x)

π(ρ′′b , η
′′
b )

π0(ρ′′b , η
′′
b )
, (15)

where (ρ′b, η
′
b), (ρ

′′
b , η

′′
b ) ∼ Π0 and θ′′b = θ(ρ′′b , η

′′
b ). Let HΠ(x, y) and QΠ(x) denote the right-

hand sides of (14) and (15), respectively. Combining (13)-(15) gives

EΠℓ(η, x; Π) ≈ B−1
B∑

b=1

{h(ηb, x) + λ [HΠ(x, 0)(1−QΠ(x)) +HΠ(x, 1)QΠ(x)]}
π(ρb, ηb)

π0(ρb, ηb)
.

(16)

We can minimize the right-hand side of (16) over x ∈ [xmin, xmax] by using a bounded

minimization routine in MATLAB.

4.4 Simulation Study

To compare the proposed procedure in Section 3.2 to EWOC, CRM, and the inverted

overdose control (IVOC) design in Example 1, a simulation study was performed in the

setting of the trial to determine the MTD of the antimetabolite 5-fluorouracil (5-FU) for

treating solid tumors in the colon, as described in Babb, Rogatko and Zacks (1998). Based

on previous studies of 5-FU, a dose of 140 mg/m2 of 5-FU was believed to be safe, and the
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MTD was believed to be no greater than 425 mg/m2, thus the dose space was taken to be

the interval [xmin, xmax] = [140, 425]. The two-parameter logistic model (1) was chosen based

on previous experience with the agent, and the uniform distribution over [0, p]× [xmin, xmax]

was chosen as the prior distribution Π0 for (ρ, η), with p = 1/3. The feasibility bound of

ω = .25 was chosen, which was also used here for the IVOC weight γ in (3). In a trial

of length n = 24, Table 1 compares EWOC that uses a linearly escalated feasibility bound

(Babb and Rogatko, 2004), denoted by EWOC∗, with IVOC, CRM, and the proposed design

in Section 3.2 with h in (11) given by the EWOC loss function (and denoted by EWOC+, in

which + signifies an additional future patient considered by (11)), for two different values of

the discount factor λ in (11). Each entry in the table was calculated from 10,000 simulated

trials. The first set of rows is a Bayesian setting in which, for each replication, a pair (ρ, η) is

drawn from Π0, and the next three sets of rows are frequentist settings (denoted Freq1, Freq2,

Freq3) where the true values (ρ, η) are set at fixed values for all 10,000 replications; these

three pairs of fixed values were drawn from Π0. A comprehensive comparison of EWOC,

CRM, sequential c-optimal, constrained D-optimal, ADP and other designs has been given

by Bartroff and Lai (2010), who use approximate dynamic programming (ADP) to minimize

the finite-horizon risk (8).

[Table 1 about here.]

Table 1 reports two different risk measures. Since the length of the trial is fixed at n = 24

in the simulation study, Risk1 is the finite-horizon analog of (9), which is (8) with h given

by the EWOC loss function (2) and no terminal loss (i.e., g = 0), and Risk2 is the same risk

function but with h given by the “inverted” loss function (3). Also reported are the bias and

RMSE (root mean squared error {E(η̂n − η)2}1/2) of the terminal MTD estimate η̂n (which

is the mean of the terminal posterior distribution of η), the DLT rate P (y = 1) (denoted

DLT), the overdose rate P (x > η) (denoted OD), the excess DLT rate E[Fθ(x)−p]+ (denoted
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OD∗), and the coherence violation rate (denoted ChV)

(n− 1)−1
n−1∑

i=1

{P (yi = 0, xi+1 < xi) + P (yi = 1, xi+1 > xi)}.

In these expressions, P and E denote the probability and expectation, respectively, with

respect to the prior distribution in the Bayesian setting, or with respect to the appropriate

fixed values of (ρ, η) in the frequentist settings, and are computed by Monte Carlo.

In terms of Risk1 and Risk2, EWOC+ performs better in the Bayesian setting than the

myopic designs EWOC∗, IVOC, and CRM, in that order. This occurs in the frequentist

settings as well, although the ordering of the myopic designs varies depending on the par-

ticular parameter values. Even though it myopically minimizes the posterior risk at every

stage, IVOC performs poorly in terms of the cumulative risk, Risk2, in the Bayesian setting.

A possible explanation is that its loss function (3) is a function of Fθ(x), whose posterior

distribution (induced by the posterior distribution of θ) has relatively large variance toward

the middle of the interval (0, 1) in which Fθ(x) takes values and, in particular, near p = 1/3,

resulting in low initial doses observed in the simulations. On the other hand, in the Freq3

setting, where η is relatively small and the dose-response curve is relatively flat (e.g., ρ

large), IVOC performs well in terms of the risks. In terms of estimation, EWOC+,λ=.4 has

the smallest RMSE, with EWOC∗ and EWOC+,λ=.1 both comparable in the Bayesian setting.

Moreover, EWOC+,λ=.4 has uniformly the smallest RMSE in the frequentist settings, with

IVOC comparable to it in Freq2 and IVOC and EWOC+,λ=.1 comparable to it in Freq3.

5. Conclusion and Discussion

In this paper we present a general formulation of Bayesian sequential design of Phase I

cancer trials. This formulation enables us to prove a general coherence result in Theorem 1

applicable to any design that can be defined as the minimizer of the posterior risk when the

loss function satisfies some mild conditions. Although the theorem is proved for the widely-



Phase I Cancer Trial Designs 15

used logistic regression model (1), the last paragraph of its proof in the Appendix shows that

it is applicable to any dose-response model that is non-increasing in the MTD, such as the

model Fθ(x) = {(tanh x+ 1)/2}θ, which is also popular.

In Section 3.2 we propose a new design that incorporates both the individual ethics of

the current patient begin administered the dose, through a given loss function such as the

EWOC loss (2), and the collective ethics of all future patients by including an additional

term in the overall loss function to represent the dose’s information content for determining

another dose for the next patient. The simulation study in Section 4.4 shows that this new

design is indeed an improvement over myopic designs in terms of global risk minimization,

post-trial estimation of the MTD, and DLT and OD rates. This design provides a practical

alternative to the optimal design associated with the intractable Markov decision problem of

minimizing (9), which requires at each stage the daunting consideration of all future posterior

distributions and calculating their associated optimal doses. For the finite-horizon problem

of minimizing (8), Bartroff and Lai (2010) have developed an approximate solution which

is a time-varying mixture of myopic and c-optimal designs. The new design in Section 3.2,

which can be described by a time-invariant functional of the posterior distribution at each

stage, is substantially simpler computationally and provides substantial improvement over

the myopic designs. We conjecture that with suitably chosen λ (depending on δ), its global

risk (9) can approximate that of the optimal design minimizing (9). Instead of minimizing

(9) directly, it may be possible to obtain a good lower bound for (9). Such a bound, which

can provide a benchmark for assessing the proposed design, is a topic for future work.

We also consider an “inverted” loss function (3), which measures deviation from the target

DLT rate p on the probability scale rather than on the dose scale, and the associated myopic

design IVOC. Even though IVOC minimizes the myopic posterior expected loss (3) at each

stage, its cumulative global loss Risk2 in Table 1 is far from optimum, exceeding even that of
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EWOC which uses a completely different loss function, in the Bayesian setting. On the other

hand, the design proposed in Section 3.2 can be applied with the IVOC loss function (3) to

yield a substantially improved design IVOC+.

Appendix

Proof of Theorem 1. We prove coherence in de-escalation; the proof for escalation is similar.

Let xmin < xmax be the boundaries of the dose space, which is assumed to be a finite interval.

For fixed η, since ℓ(η, x) is a convex function of x, its right derivative ℓx(η, x) with respect

to x is nondecreasing for xmin 6 x < xmax, and the same is also true for the left derivative

for xmin < x 6 xmax. Moreover, the left and right derivatives are equal and continuous

except for at most countably many points; see Rockafellar (1970, pages 214, 228, 244). Let

xΠ = argminx EΠℓ(η, x), Π̃ be the posterior distribution obtained from Π and the additional

dose-response pair (x, y) = (xΠ, 1), and let L(x) = EΠ̃ℓ(η, x). Since ℓ(η, x) is convex in

x for every η, so is L(x); moreover, its right derivative is given by L̇+(x) = EΠ̃ℓx(η, x).

To show that xΠ̃ 6 xΠ, we shall assume that xΠ < xmax because the case xΠ = xmax is

trivial. It suffices to show that L̇+(xΠ) > 0 because L is convex and has minimizer xΠ̃. Since

EΠℓx(η, xΠ) > 0 and dΠ̃(θ) = Fθ(xΠ)dΠ(θ)/
∫
Fθ′(xΠ)dΠ(θ

′), recalling that (x, y) = (xΠ, 1),

it follows that

L̇+(xΠ) > EΠ̃ℓx(η, xΠ)− EΠℓx(η, xΠ)

=

∫
ℓx(η, xΠ)Fθ(xΠ)dΠ(θ)∫

Fθ′(xΠ)dΠ(θ′)
−

∫
ℓx(η, xΠ)dΠ(θ)∫

dΠ(θ′)

= A

/∫
Fθ′(xΠ)dΠ(θ

′) , (17)

where A =
∫ ∫

ℓx(η, xΠ)[Fθ(xΠ) − Fθ′(xΠ)]dΠ(θ)dΠ(θ
′). A change of variables also yields

A = −
∫ ∫

ℓx(η
′, xΠ)[Fθ(xΠ)− Fθ′(xΠ)]dΠ(θ)dΠ(θ

′). Hence

2A =

∫ ∫
[ℓx(η, xΠ)− ℓx(η

′, xΠ)][Fθ(xΠ)− Fθ′(xΠ)]dΠ(θ)dΠ(θ
′) > 0, (18)
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in which the inequality follows from

[ℓx(η, xΠ)− ℓx(η
′, xΠ)][Fθ(xΠ)− Fθ′(xΠ)] > 0 (19)

for all x, θ and θ′, as will be shown below. Combining (17) and (18) yields L̇+(xΠ) > 0,

completing the proof of the theorem.

From the assumption that ℓ(η, x)− ℓ(η, x′) is non-increasing in η for any x > x′, it follows

that ℓx(η, x) is non-increasing in η for fixed x. It therefore suffices for the proof of (19)

to show that Fθ(x) is non-increasing in η = F−1
θ (p). Since p−1 = 1/Fθ(η) = 1 + e−(α+βη),

Fθ(x) = 1/[1 + exp{log(p−1 − 1) + βη − βx}], which is non-increasing in η since β > 0.
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Table 1

Risk1, Risk2, bias and RMSE of the final MTD estimate, DLT rate, MTD overdoes rate (OD), excess DLT rate
E[Fθ(x)− p]+ (OD∗), and coherence violation rate (ChV), with SEs in parentheses, of various designs.

Statistic EWOC∗ IVOC CRM EWOC+,λ=.1 EWOC+,λ=.4

Bayesian: (ρ, η) ∼ Π0

Risk1 485.5 (3.6) 723.2 (3.6) 986.1 (45.9) 469.5 (3.0) 454.8 (2.8)
Risk2 1.03 (.01) 1.44 (.02) 1.54 (.02) .85 (.01) .73 (.007)
Bias -9.67 (.6) -50.2 (.8) 22.3 (1.6) 2.42 (.7) -5.9 (.6)
RMSE 61.5 (.7) 75.8 (.2) 157.3 (.8) 66.9 (.2) 58.6 (.7)
DLT (%) 33.5 (.001) 26.6 (9×10−4 ) 39.1 (.001) 29.3 (.0009) 29.1 (9×10−4)
OD (%) 37.4 (.001) 17.5 (8×10−4 ) 55.6 (.001) 29.6 (9×10−4) 27.0 (9×10−4)
OD∗ .043 (2×10−4) .043 (3×10−4) .078 (3×10−4) .029 (2×10−4) .021 (1×10−4)
ChV (%) 0 (0) .6 (.04) 0 (0) 15.0 (8×10−4) 14.4 (8×10−4)

Freq1: ρ = .07, η = 403.9

Risk1 585.6 (1.3) 1302.2 (.8) 368.8 (1.1) 175.9 (1.0) 170.3 (1.1)
Risk2 .78 (.002) 1.40 (6×10−4) .53 (.001) .29 (.001) .25 (.001)
Bias -51.1 (.2) -151.7 (.2) -30.1 (.4) -23.2 (.3) -48.7 (.2)
RMSE 58.8 (.8) 156.1 (.6) 44.9 (.1) 49.0 (.5) 19.2 (.4)
DLT (%) 20.6 (8×10−4) 10.3 (7×10−4) 24.9 (9×10−4) 18.7 (8×10−4) 18.6 (8×10−4)
OD (%) 0 (0) 0 (0) 2.3 (3×10−4) 1.2 (2×10−4) 1.1 (2×10−4)
OD∗ 0 (0) 0 (0) 4×10−4 (1×10−5) .001 (1×10−5) .001 (1×10−5)
ChV (%) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Freq2: ρ = .19, η = 269.1

Risk1 402.8 (.8) 423.1 (.9) 313.7 275.0 (3.7) 266.2 (3.8)
Risk2 .53 (.003) .49 (.001) .99 (.006) .43 (.001) .26 (.001)
Bias 15.0 (.5) -28.9 (.1) 32.5 (.4) 17.3 (.7) 12.3 (.4)
RMSE 47.5 (.2) 32.0 (.7) 52.1 (.7) 38.2 (.3) 25.2 (.3)
DLT (%) 32.6 (.001) 25.4 (9×10−4) 38.2 (.001) 28.2 (9×10−4) 24.8 (9×10−4)
OD (%) 32.8 (.001) 0 (0) 83.1 (8×10−4) 27.1 (9×10−4) 26.9 (9×10−4)
OD∗ .02 (7×10−5) 0 (0) .053 (8×10−5) .03 (4×10−5) .01 (4×10−5)
ChV (%) 4.3 (4×10−4) 3.1 (4×10−4) 0 (0) 17.6 (8×10−4) 12.7 (7×10−4)

Freq3: ρ = .30, η = 226.7

Risk1 674.3 (4.9) 232.1 (2.9) 1444.9 (6.3) 158.9 (4.9) 146.1 (3.5)
Risk2 .27 (.002) .09 (4×10−4) .59 (.003) .05 (4×10−4) .05 (6×10−4)
Bias 42.9 (.62) 10.3 (.14) 81.4 (.5) 54.9 (.54) 47.4 (.49)
RMSE 74.2 (.7) 17.4 (.5) 96.8 (.8) 18.0 (.5) 13.2 (.2)
DLT (%) 34.2 (.001) 32.7 (.001) 36.6 (.001) 35.8 (.001) 35.7 (.001)
OD (%) 73.2 (.001) 54.3 (.001) 93.5 (5×10−4) 88.8 (6×10−4) 81.0 (6×10−4)
OD∗ .014 (3×10−5) .002 (2×10−5) .032 (4×10−5) .031 (4×10−5) .030 (4×10−5)
ChV (%) 0 (0) 3.9 (5×10−4) 0 (0) 10.0 (6×10−4) 9.6 (6×10−4)
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