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Abstract

A well-known stopping rule in adaptive mastery testing is to terminate the assessment once the
examinee’s ability confidence interval lies entirely above or below the cut-off score. This article
proposes new procedures that seek to improve such a variable-length stopping rule by coupling
it with curtailment and stochastic curtailment. Under the new procedures, test termination can
occur earlier if the probability is high enough that the current classification decision remains the
same should the test continue. Computation of this probability utilizes normality of an asympto-
tically equivalent version of the maximum likelihood ability estimate. In two simulation sets, the
new procedures showed a substantial reduction in average test length while maintaining similar
classification accuracy to the original method.
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In the past several decades, computerized adaptive tests (CATs) have received much attention

in educational and psychological research due to their efficiency in achieving the goal of assess-

ment, whether it is to estimate the latent trait of test takers with high precision or to accurately

classify them into one of several latent classes. In the latter case, the adaptive nature of CATs is

used in educational testing to make inferences about the location of examinees’ latent ability
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relative to one or more prespecified cutoff points along the ability continuum. When there is

only one cutoff point and two proficiency groups, this type of CAT is commonly referred to as

adaptive mastery testing (AMT; Spray & Reckase, 1996; Weiss & Kingsbury, 1984). In this set-

ting, an examinee will pass the test and be declared a ‘‘master’’ if evidence collected based on

test responses indicates that the latent ability is above the threshold for mastery.

Among other advantages of AMT over conventional paper-and-pencil tests is the fact that

different examinees might receive different sets of test items that best suit their ability levels.

When test items are selected adaptively to match examinees’ true ability, high-performing

examinees will not be given easy items unnecessarily. Similarly, low-performing examinees

will not be under undue pressure when trying to solve very difficult items. In any implementa-

tion of AMT, the choice of classification rule plays a vital role. Several methods that have been

proposed include the sequential probability ratio test (SPRT; Spray, 1993; Thompson, 2011;

Weissman, 2007), the sequential Bayes (SB) approach (Spray & Reckase, 1996), the general-

ized likelihood ratio (GLR) approach (Bartroff, Finkelman, & Lai, 2008; Thompson, 2011),

and the confidence interval (CI) approach (Thompson, 2011; Weiss & Kingsbury, 1984). All of

these approaches stem from the framework of sequential analysis (Wald, 1947), whereby infer-

ences are continually made after each additional observation is obtained. Ideally, inferential

procedures based on sequential analysis should be allowed to continue indefinitely until the

desired confidence level is reached. In practice, however, there is usually a fixed upper bound n

on the number of observations that the practitioners are willing to obtain. In the context of

AMT, n is the maximum number of test items that any examinee can receive before a classifi-

cation decision is made. When termination of the test is forced to occur after n observations are

obtained, it is said that a truncated sequential procedure is being used.

Further improvements to sequential procedures for classification purposes have been pro-

posed in the literature. Eisenberg and Ghosh (1980) discussed a modification rule called curtail-

ment that allows for a sequential procedure to be stopped early if no subsequent observations

can alter the final classification decision. By this specification, the curtailed version of a sequen-

tial procedure always yields the same classification results as the original procedure. Therefore,

the two methods always have the same proportion of correct decisions (PCDs). However, the

curtailed version has lower average test length (ATL) due to the possibility of early stopping.

As a result, curtailed truncated sequential procedures could be useful in many different applica-

tions, including in clinical trials and educational testing. In educational testing, administering

the fewest possible number of items while trying to make accurate classification decisions is

important because a shorter test reduces the operational cost of assessment as well as alleviating

the problem of overexposing items in high-stakes testing programs.

As a further improvement to the aforementioned idea of curtailment, a sequential procedure

can also be halted during interim analyses when subsequent observations have only a small prob-

ability of altering the final results of analysis. Within this framework of stochastic curtailment

that was first introduced by Lan, Simon, and Halperin (1982) in the context of clinical trials, sev-

eral formulations are available depending on how the probability of whether the final results of

analysis will change should the sequential procedure continue is calculated. Regardless of what

approach is followed, many applications of stochastic curtailment have arisen in various fields.

In the particular context of educational measurement, Finkelman (2008, 2010) used stochastic

curtailment as a stopping rule for AMT in addition to the original truncated SPRT (TSPRT) and

its curtailed version. It was shown that the stochastically curtailed TSPRT, albeit having slightly

lower PCD than that of the original version, greatly improves the ATL whether or not the test is

constrained from content balancing or exposure control perspectives.

Although curtailment and stochastic curtailment have both been applied in the AMT setting,

their applications have only been studied when the TSPRT or the GLR approach is used as the

Sie et al. 279

 at UNIV OF SOUTHERN CALIFORNIA on October 14, 2015apm.sagepub.comDownloaded from 

http://apm.sagepub.com/


stopping criterion. This fact limits their usefulness because the TSPRT or the GLR approach

might not always be the stopping method of choice. Previous research has found that both the

TSPRT and the GLR stopping criteria work best when test items are selected based on maxi-

mum Fisher information at the cut-off point (Reckase & Spray, 1994; Thompson, 2011). In

terms of item bank structure, this requires that many items have high information at the cut-off

score. If the item bank is relatively flat in terms of its information function, selecting test items

based on maximum Fisher information at the interim ability estimate is more appropriate. In that

case, the CI approach works best as a stopping rule due to the decreasing conditional standard

error of measurement (CSEM; Thompson, 2007). In addition, because the TSPRT and the GLR

stopping criteria are typically used in conjunction with the item selection method that maxi-

mizes Fisher information at the cut-off point, the same set of items will be selected for every

examinee. Both stopping criteria are therefore prone to the problem of overexposure of test

items. On the contrary, different sets of items will be selected for different examinees under the

CI approach as it is usually coupled with an adaptive item selection method. Therefore, the dis-

tribution of item exposure rates might benefit from using a CI-based method, although a rather

uneven distribution is still likely to be observed if item selection is based on Fisher information.

Preference toward using the CI approach as the stopping rule over the TSPRT could also be

attributed to the arbitrariness inherent in the latter. The TSPRT requires that the likelihood func-

tion be compared at 2 points close to the cut-off score, with the region along the latent trait con-

tinuum falling between those 2 points referred to as the ‘‘indifference region’’ (Thompson,

2007; Wald, 1947; Weissman, 2007). The TSPRT thus assumes that the practitioners are indif-

ferent to the fact that the probability of misclassifying examinees is typically greater than the

nominal Type I error rate within this region (Y.-C. Chang, 2005), an assumption that some prac-

titioners might not be willing to make. It is also not clear how wide the indifference region

should be, a factor that further affects how early the AMT can terminate. This dependence of

the TSPRT on the width of the indifference region is explained by Thompson (2011).

The purpose of this article is to examine whether the CI stopping rule for AMT can benefit

from the use of curtailment and stochastic curtailment. In particular, it is investigated whether

curtailment and stochastic curtailment can substantially reduce the ATL of the CI stopping rule,

without compromising classification accuracy. If so, the curtailed and stochastically curtailed

versions of the CI stopping rule would be attractive options under the circumstances (outlined

earlier) where the CI approach is preferable to the TSPRT and the GLR.

In constructing the CI for the person ability parameter, an interim ability estimate needs to

be available. While the maximum likelihood (ML) estimator is commonly used for this purpose,

it is sometimes not uniquely defined when the three-parameter logistic (3PL) model (explained

below) is used, as it is in this article. Therefore, for the purposes of this study, the modified ver-

sion of the ML estimator introduced by Chang and Ying (2009) will be used. This modified

estimator is unique whenever it exists and is asymptotically equivalent to the original ML esti-

mator. It is this modified ML estimator that will guide adaptation of curtailment and stochastic

curtailment to the framework of the CI stopping rule.

Item Response Theory (IRT) and the Truncated CI Stopping Rule
in AMT

IRT

In AMT, the classification decision for examinees is built upon the relationship between their

latent ability and item responses. This relationship is commonly characterized via IRT models.

One of the most common models used when test items are scored dichotomously (i.e., correct
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or incorrect) is the 3PL model. With Ui being a Bernoulli random variable that takes the value

1 if item i is answered correctly and 0 otherwise, the probability of an examinee with ability u

answering item i correctly is given by

Pi uð Þ[P Ui = 1juð Þ= ci +
1� ci

1 + exp �ai u� bið Þf g , ð1Þ

where ai is the item discrimination parameter, bi is the item difficulty parameter, and ci is the

item guessing parameter. When all ci in Model 1 are set to 0, the two-parameter logistic (2PL)

model is obtained. In addition to having all zero guessing parameters, if all ais in Model 1 have

the same value, the one-parameter (1PL) model is obtained.

Using the model introduced earlier, the likelihood function upon observing an examinee’s

responses to the ith test item is given by L(uiju) = fPi uð ÞguifQi uð Þg1�ui , where

Qi(u) = 1� Pi(u). The likelihood function upon observing the responses to n test items is

Ln[L(u1, . . . , unju) =
Qn

i = 1 L(uiju) =
Qn

i = 1 fPi(u)guifQi(u)g1�ui , which is a consequence of the

assumption that all test responses are independent given u (i.e., the local independence assump-

tion). The likelihood function can then be used to define the Fisher information for item i as

FIi(u) = � E½∂2
�
∂u2flog L(Uiju)g�= Qi(u)fPi(u)� cig2

.
Pi(u)(1� ci)

2a2
i as well as the Fisher

information of a test of n items given by FI (n)(u) = � E½∂2
�
∂u2flog Lng�=

Pn
i = 1 FIi(u). It is

well known that this Fisher test information is inversely proportional to the asymptotic variance

of the ML ability estimate. Therefore, item selection algorithms in AMT and other CATs often

attempt to maximize the Fisher test information.

Truncated CI Stopping Rule in AMT

The idea of using the CI stopping rule for classification of examinees in AMT originated from

Weiss (1983). With û(k) denoting the examinee’s ML ability estimate computed using the first k

test responses, a CI around û(k) is constructed and its position relative to the test cutoff point uc

is checked. If the lower end point of the CI is higher than uc, the test is terminated and the exam-

inee is classified as a master. If the upper end point of the CI is below uc, the test is terminated

and the examinee is classified as a nonmaster. If neither situation occurs, another test item is

administered, the ability of the examinee is reestimated, and its associated CI is recomputed. As

mentioned earlier, the asymptotic variance of the ML estimate of u is inversely proportional to

the test information. Therefore, the 100(1� a)% CI for u after the kth test item is administered

can be approximated by

û
kð Þ � z1�a=2 FI kð Þ uð Þ

h i�1=2

, û
kð Þ

+ z1�a=2 FI kð Þ uð Þ
h i�1=2

� �
, ð2Þ

where z1�a=2 denotes the 1� a=2 quantile of a standard normal random variable, and FI (k)(û(k))

can be used in place of the unknown FI (k)(u).

The CI for u can be constructed following Equation 2 even when k is small, as long as the

examinee’s response pattern already contains both correct and incorrect answers to guarantee

the existence of a finite ML ability estimate. However, it is well understood that a CI formed

using few observations is not highly reliable due to the large standard error of the estimate.

With more observed test responses, the test information becomes larger because each term in

the summation is nonnegative. Therefore, the CIs will shrink and give a more useful idea as to

where the examinee’s true ability actually lies. In practice, this is usually taken into account by
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imposing a minimum test length n0, prior to which no classification decisions are made. Such a

minimum test length could also be chosen according to the test blueprint. For example, on a

mathematics test that consists of three sections (Algebra, Geometry, and Statistics), n0 = 15

items could be imposed as a constraint if all three sections have to have a minimum of five

items each. Once the minimum number of test responses has been observed, the CI for u can be

constructed and early stopping of the test might be invoked at any time before the maximum

test length n is reached.

When the examinee’s true ability is very close to the cutoff score, the desired early stopping

scenario might not occur. The CI for u constructed around û will potentially always contain uc,

because û itself is likely to be close to the examinee’s true ability, and therefore close to uc. In

that case, the test will continue until all n items are administered. At that point, termination is

inevitable, and the classification decision can be made simply by comparing the final ML abil-

ity estimate û(n) with the cutoff score uc (Weiss & Kingsbury, 1984).

Curtailed and Stochastically Curtailed CI Stopping Rules in AMT

Curtailed CI Stopping Rule

As explained in the previous section, early stopping using the truncated CI stopping rule in

AMT can occur any time at or after n0, but before n items are administered if either the lower

bound of the interim CI exceeds the cut-off score uc, or if the upper bound is less than uc. This

sequential method can be stated mathematically as follows. Let Ik = (uk , �uk) be the CI for u at

time k as defined in Equation 2. In addition, following Finkelman (2008, 2010), let DT and KT

be the classification decision and stopping time, respectively, of the truncated CI stopping rule.

Then, for any k 2 fn0, n0 + 1, . . . , n� 1g, set KT = k and DT = M (i.e., stop testing and declare

mastery) if uc\uk; set KT = k and DT = N (i.e., stop testing and declare nonmastery) if �uk\uc;

or continue testing to stage k + 1 if uk � uc � �uk . If k = n, the test is necessarily terminated. Set

DT = M if and only if uc � û(n).

The above formulation of the truncated CI stopping rule in AMT is simple and thus can be

implemented very easily in practice. To see why further improvement using curtailment is bene-

ficial, consider, for example, the following hypothetical situation: On a test with n = 6 and cut-

off point uc = � :2, suppose that the first five items administered to a certain examinee have

discrimination parameters a1 = 1:9, a2 = 1:4, a3 = 1:7, a4 = 1:6, a5 = 1:7; difficulty parameters

b1 = 0, b2 = 2:0, b3 = 0:8, b4 = 1:5, b5 = 0:9; and guessing parameters c1 = 0:21, c2 = 0:23, c3 =

0:23, c4 = 0:18, c5 = 0:22. Suppose that the examinee answers Questions 1, 3, and 5 correctly

but Questions 2 and 4 incorrectly. In this case, the examinee’s ML ability estimate after answer-

ing the first five test items is û(5) = 1:21, with corresponding CI for u given by [20.30, 2.72]. As

the CI at this stage still contains the cutoff point, the test cannot be terminated and the last test

item needs to be administered, say, with item parameters a6 = 2:0, b6 = 1:2, c6 = 0:19. If the

examinee answers this item correctly, the ML ability estimate becomes û(6) = 1:48. If the exami-

nee answers this item incorrectly, the ML ability estimate becomes û(6) = 0:85. Under either sce-

nario, the examinee will pass the test because the final ML ability estimate will exceed the cut-

off point. Thus, the same classification decision could have been made earlier after the adminis-

tration of the fifth item, because administering the sixth item cannot possibly change the final

classification decision that the examinee passes the test.

The choice of item parameters in the preceding example was based on the assumption that

an ideal item pool was available; that is, for any updated ability estimate, there exists an item

with difficulty parameter close to the interim ability estimate. Although this setting might not

be realistic in practice, the possibility of shortening AMT when the final classification decision
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is certain—or nearly certain—should be clear. It is in this regard that the notion of curtailment

and stochastic curtailment will be used. Both methods strive to make the same final classifica-

tion decision as the truncated CI stopping rule. With curtailment, the truncated CI stopping rule

in AMT can be modified as follows: Let DC and KC be the classification decision and stopping

time, respectively, of the curtailed CI stopping rule. Then, for any k 2 fn0, n0 + 1, . . . , n� 1g,
set KC = k and DC = M (i.e., stop testing and declare mastery) if fKT = k,

DT = Mg orfuc � û(k)and P(DT = M jKT = n, u1, . . . , uk) = 1g; set KC = k and DC = N (i.e.,

stop testing and declare nonmastery) if fKT = k, DT = Ng or fû(k)\uc and P(DT = N jKT =

n, u1, . . . , uk) = 1g; or continue testing to stage k + 1 otherwise. If k = n, the test is necessarily

terminated. Set DC = M if and only if uc � û(n).

As seen from the preceding formulation of the curtailed CI stopping rule, the authors only

stop early to declare mastery if the current ability estimate is at or above the cutoff point and

the examinee has a probability of 1 to be declared a master at the end of the test. This can be

checked in practice by calculating the examinee’s final ability estimate if all future responses

were to be incorrect. If that final ability estimate is still at or above the cutoff score, the test is

stopped, and the current mastery classification decision is preserved. Similarly, the authors only

stop early to declare nonmastery if the current ability estimate is below the cutoff point and the

examinee has a probability of 1 to be declared a nonmaster at the end of the test. To check this,

the final ability estimate if all future responses were to be correct is calculated. If the resulting

final ability estimate is still below the cutoff score, then the test is stopped, and the current non-

mastery classification decision is preserved.

As explained earlier, when the CI stopping rule is used in AMT, test items administered to

an examinee are selected to maximize information at his or her interim ability estimate. In the

context of curtailment, the identity of all future items to which the all-correct or all-incorrect

responses (alluded to earlier) will be assigned needs to be known. The identity of the next test

item can easily be obtained by utilizing the test responses given so far. The identity of all other

future test items can be figured out iteratively by first calculating the examinee’s ability esti-

mate after the next item is answered correctly (if all-correct future responses are assumed) or

incorrectly (if all-incorrect future responses are assumed), then choosing another item that max-

imizes information at the new ability estimate, and repeating the process. As another alterna-

tive, a ‘‘representative set’’ of items can be used as surrogates for those unknown future items.

When performing curtailment and stochastic curtailment of the TSPRT, Finkelman (2008) sug-

gested that the representative set consist of the n� k items that have the maximum Fisher infor-

mation at the current ability estimate, among the items that have not been administered to the

examinee thus far. However, because no one has studied curtailment and stochastic curtailment

of the truncated CI stopping rule (prior to the current study), the question of whether such a rep-

resentative set would work well for this stopping rule has been open. The simulation results

presented in ‘‘Simulation’’ section show that the preceding representative set does indeed work

well for purposes of this study.

Stochastically Curtailed CI Stopping Rule

Standard Formulation of Stochastic Curtailment

A more aggressive modification to the truncated CI stopping rule in AMT is obtained by using

stochastic curtailment. Here, instead of requiring that the probability be equal to one that the

same final classification decision is obtained should the test continue, the only requirement is

that the probability be at or above a specified threshold. For an examinee currently considered

a master (i.e., an examinee whose current maximum likelihood estimate [MLE] is greater than
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or equal to the cutoff point), his or her probability of remaining a master is required to be at

least g9 for stopping to occur. For an examinee currently considered a nonmaster (i.e., an exam-

inee whose current MLE is less than the cutoff point), his or her probability of remaining a non-

master is required to be at least g for stopping to occur. Here g9 and g are constants satisfying

:5\g � 1 and :5\g9 � 1. The sequential method can be expressed mathematically as fol-

lows: Let DS and KS be the classification decision and stopping time, respectively, of the sto-

chastically curtailed CI stopping rule. Then, for any k 2 fn0, n0 + 1, . . . , n� 1g, set KS = k and

DS = M (i.e., stop testing and declare mastery) if

KT = k, DT = Mf g or uc � û
kð Þ

and min
u2Q

Pu DT = M jKT = n, u1, . . . , ukð Þ � g9

� �
; ð3Þ

set KS = k and DS = N (i.e., stop testing and declare nonmastery) if

KT = k, DT = Nf g or û
kð Þ
\uc and min

u2Q
Pu DT = N jKT = n, u1, . . . , ukð Þ � g

� �
; ð4Þ

continue testing to stage k + 1 otherwise. If k = n, the test is terminated and DS = M is set if and

only if uc � û(n).

The previous formulation of the stochastically curtailed CI stopping rule is very similar to

that of the curtailed CI stopping rule presented earlier. In particular, when g = g9 = 1, the two

stopping rules become equivalent. Nevertheless, the stochastically curtailed CI stopping rule is

slightly more complicated. Instead of using hypothetical all-correct or all-incorrect future

responses to check whether the probability is one that the same classification decision is

made at the end of the test, the probability in Equation 3 or 4 needs to be evaluated at a set

Q of u values. The set Q would ideally be a 1-point set consisting of the true ability value,

such that the probabilities in Equations 3 and 4 are evaluated under the examinee’s true abil-

ity. However, the true ability is unknown, and thus, another value (or other values) is used in

Q instead. In the standard formulation of stochastic curtailment that is used in conjunction

with the TSPRT as a stopping rule, Q= fuþ, u�g where uþ = uc + d and u� = uc � d form the

end points of the indifference region around uc. For early stopping to occur, either the prob-

ability statement in Equation 3 or the probability statement in Equation 4 must hold under

both uþ and u�. As the concept of the indifference region does not exist in the framework of

AMT with the CI stopping rule, uþ and u� need to be replaced in Q by some other values.

Thus, several of the variations introduced in Finkelman (2010) were used in the present

study, and these are explained next.

Probability Calculations of the Stochastically Curtailed CI Stopping Rule

As a first alternative to evaluate the probability calculations in Equations 3 and 4, the authors

consider using Q= fû(k)g. Upon using the interim ML ability estimate û(k), information about

the examinee’s true ability obtained from responses to the items administered so far is utilized.

Although û(k) might not provide an accurate estimate of the true ability for very small k, this

will not be problematic in practice when there is a certain minimum test length requirement. At

any stage k � n0, it is safe to assume that û(k) is already in the proximity of the true ability, so

that using its value in the probability calculations of Equations 3 and 4 will provide a reason-

able approximation to the true probability under the true ability value. As k increases, consis-

tency of the ML estimator ensures that û(k) gets closer to the true ability value (H.-H. Chang &

Stout, 1993). Consequently, the approximation becomes more accurate.
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As a second alternative, the lower or upper end point of the interim CI can be used for u in

the set Q. The motivation to use this approach instead of the first one described above relates to

the fact that û(k), as an estimate of u, still has an inherent uncertainty in it. If û(k) overestimates

u, the probability in Equation 3 will be overestimated, thus increasing the probability of wrongly

invoking early stopping with a mastery classification decision. However, if û(k) underestimates

u, the probability in Equation 4 will be overestimated, thus increasing the probability of wrongly

invoking early stopping with a nonmastery classification decision. To overcome such problems,

the probability in Equation 3 can be evaluated at Q= fukg when uc � û(k) and in Equation 4 at

Q= f�ukg when û(k)\uc. This approach of using Q= fukg or Q= f�ukg can therefore be viewed as

a more conservative approach than the earlier approach, whereby Q= fû(k)g is used; the ATL of

the former is expected to be larger than that of the latter, but the PCD should also be higher.

The authors note that in each of the stopping rules introduced above, the ML ability estimate

has been used to construct the end points of all CIs. In particular, in the case of the stochasti-

cally curtailed CI stopping rule, the ML estimate of u is used not only in constructing the CI

that serves as a criterion for early stopping but also in evaluating the probabilities in Equations

3 and 4. The rest of this section is devoted to explaining how those probabilities can be evalu-

ated using an alternative to the ML estimate due to the latter’s minor drawback explained next.

An Alternative to the MLE: The Modified MLE

At any stage k during the test, the ML estimate û(k) is obtained by maximizing the likelihood

function. This is equivalent to maximizing the logarithm of the likelihood function, which is

given by log Lk[ log L(u1, . . . , uk ju) =
Pk

i = 1 ½ui logfPi(u)g + (1� ui) logfQi(u)g�. By taking

the derivative of the log likelihood function with respect to u, it is seen that û(k) is the solution

to the likelihood equation
Pk

i = 1 fui � Pi(u)gP9
i(u)
�

Pi(u)Qi(u) = 0, where P9
i(u) is the first deri-

vative of the item response function in Model 1 with respect to u.

When the 3PL model is used, the likelihood equation simplifies to
Pk

i = 1 ai Pi(u)� cif g
ui � Pi(u)f g=Pi(u) 1� cið Þ= 0. Unfortunately, this likelihood function might possess several

maxima in �‘, ‘ð Þ, which means that a unique solution to it might not necessarily exist

(Hambleton, Swaminathan, & Rogers, 1991). To address the multiple root problem of the likeli-

hood equation, H.-H. Chang and Ying (2009) used the approximation (Pi(u)� ciÞ=ðPi(u)

(1� ci))’(1 +
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 8ci

p
Þ=ð2ci + 1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 8ci

p
) to come up with an approximate likelihood

equation:

Xk

i = 1

ai 1 +
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 8ci

p� 	
ui � Pi uð Þf g

2ci + 1 +
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 8ci

p = 0: ð5Þ

The solution to Equation 5, which is called the modified ML estimate of u, is unique when-

ever it exists because the left-hand side of 5 is a monotone decreasing function of u. A necessary

and sufficient condition for existence is as follows:

Xk

i = 1

ai 1 +
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 8ci

p� 	
ui

2ci + 1 +
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 8ci

p .
Xk

i = 1

ai 1 +
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 8ci

p� 	
ci

2ci + 1 +
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 8ci

p : ð6Þ

For large n, Equation 6 holds almost certainly, and the corresponding solution ûn to 5 is

strongly consistent as well as asymptotically normal with a mean equal to the true ability and

variance 1
�

FI (n)(ûn). Therefore, a CI of u can be constructed in the same way as in Equation 2,

only replacing the ML estimate of u by its modified ML estimate. Based on their modified ML

Sie et al. 285

 at UNIV OF SOUTHERN CALIFORNIA on October 14, 2015apm.sagepub.comDownloaded from 

http://apm.sagepub.com/


estimate of u, H.-H. Chang and Ying (2009) further proposed the following item selection algo-

rithm, assuming that there exists an infinite item pool and that all item parameters satisfy

0\m\ai\M\‘, �‘\bi\‘, and ci � 1� d0 for some d0.0:

1. Select the first item with parameters a1, b1, and c1. Subsequently, choose items with

nondecreasing b parameters if the responses are all correct or items with nonincreas-

ing b parameters if the responses are all incorrect. Continue until the response pattern

contains both correct and incorrect answers, say, after k0 items have been

administered.

2. For each k � k0, check whether Equation 6 is satisfied. If it is, define ûk to be the

unique solution of Equation 5. Otherwise, define ûk = rk , where rk # �‘ is a prede-

termined sequence.

3. With ûk from Step 2, choose the next item such that bk + 1 = ûk .

In AMT with the curtailed and stochastically curtailed CI stopping rules, the probabilities in

Equations 3 and 4 need to be evaluated, conditioning on all item responses that have been

observed. Therefore, to use the consistency and asymptotic normality results of H.-H. Chang

and Ying (2009) in AMT, a slight generalization is needed for conditional distributions. For this

purpose, Theorem 1 will be used, which is available in Appendix A as an online supplement to

this article. Using the modified ML estimate of u proposed by Chang and Ying and Theorem 1,

stochastic curtailment for the CI stopping rule in AMT can now proceed by making use of

asymptotic theory. Using the result of Theorem 1, the probability calculations in Equations 3

and 4 can now be approximated by a normal probability.

In practice, the asymptotic result based on Theorem 1 is used to decide whether to terminate

early only when k is far less than n. If k is close to n (say, with five remaining items on the test),

the probability in Equation 3 can be evaluated using exact calculations. This is done by consid-

ering all possible response patterns that the examinee can generate for the hypothetical future

items from the representative set. With five remaining items on the test before reaching the

maximum test length, an exact calculation can be evaluated by considering all 25 = 32 response

patterns that the examinee can generate when answering those five items selected from the rep-

resentative set. A hypothetical final ML ability estimate is then computed in each case, and the

proportion of all estimates that meet or exceed the cutoff point is then evaluated, weighted by

the respective probability of each response pattern. The probability calculation in Equation 4 is

obtained analogously via the response patterns for which the final ML estimate does not reach

the cutoff point.

Simulation

The previous section has described motivation for using curtailment as well as stochastic curtail-

ment in conjunction with the truncated CI stopping rule in AMT. In this section, results of a

simulation study are presented to provide comparisons between the stopping rules in terms of

their ATL as well as PCD. The four stopping rules studied are the original truncated CI stopping

rule, the curtailed CI stopping rule, and the two formulations of the stochastically curtailed CI

stopping rule described in ‘‘Stochastically Curtailed CI Stopping Rule ’’ section. In the simula-

tion set presented herein, the stopping rules were compared when test items were selected purely

based on a psychometric criterion. Another simulation set (available in Appendix B as an online

supplement to this article) compared the stopping rules when other test constraints such as con-

tent balancing and item exposure control were considered.
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Simulation Design

The 3PL model was used with an item pool consisting of 500 items with IRT a-parameters from

U(0.5, 2.5), b-parameters from U(23.6, 3.6), and c-parameters from U(0.00, 0.25) as in H.-H.

Chang and Ying (1996). Following Finkelman (2010), n0 = 20 and n = 50 were used as the mini-

mum and maximum test length, respectively. All CI-based stopping rules used a 95% CI. In

addition, both g and g9 were fixed at .95 for the stochastically curtailed stopping rule. The cut-

off point for the test was uc = 0, reflecting a testing situation where approximately half of the

examinees would pass under a standard normal ability distribution in the population. One thou-

sand replications were conducted at each of 13 evenly spaced u values from uc � 0:6 to uc + 0:6,

and results were averaged across replications.

To avoid the multiple roots problem of the likelihood equation of the 3PL model as dis-

cussed in the ‘‘An Alternative to the MLE: The Modified MLE’’ section, the modified ML esti-

mate of H.-H. Chang and Ying (2009) was used for all four stopping rules. In particular, the

truncated CI stopping rule was based on the CI of u that was constructed at each stage fol-

lowing 2, only with the modified ML estimate of u used in place of the original ML esti-

mate. The curtailed CI stopping rule was based on computing the final modified ML ability

estimate should all future responses be correct (or incorrect) for an examinee whose current

modified ML ability estimate is below (or above) the test cut-off point. The stochastically

curtailed CI stopping rule was based on the probability calculations in Equations 3 and 4.

Two versions were examined: (a) evaluating the probabilities at Q= fûkg and (b) evaluating

the probabilities at the lower or upper end point of the interim CI for u, depending on the

relative position of the interim modified ML ability estimate to the test cutoff point. It can

be noted that the simulations were also performed using the original ML estimate and the

results were similar to those with the modified ML estimate; therefore, for simplicity, only

the results using the modified ML estimate are presented. In addition, the simulations using

modified ML estimates were performed with two approaches to evaluate the probability in

Equation 3: one when it was calculated using exact calculations for k 2 ½n� 5, nÞ�, and the

other when the asymptotic result based on Theorem 1 was used throughout the test. While

only results under the first approach will be presented hereafter, it was found that there were

only minor differences between results under both approaches. Therefore, continuing to use

the asymptotic result based on Theorem 1 is also an option in practice.

In all stopping rules and both simulation sets, test items were selected following the algo-

rithm proposed by H.-H. Chang and Ying (2009) as described in ‘‘Stochastically Curtailed

CI Stopping Rule’’ section. In particular, Equation 6 was checked at each stage during the

test. If the condition was met, ûk was defined to be the unique solution of Equation 5.

Otherwise, ûk was set to be the minimum of fû1, . . . , ûk�1, rkg, where frkg is a decreasing

sequence with r1 = 0 and rn = � 4. For the curtailed and stochastically curtailed CI stopping

rules, the identity of future items was approximated using the notion of ‘‘representative set’’

of Finkelman (2008).

Similar to Finkelman (2008, 2010), each simulation set was conducted to allow for a

matched comparison between the different stopping rules. For every simulated examinee,

the four stopping rules were run simultaneously, using the same response pattern to make

a classification decision. If one stopping rule ended before the others, the remaining

methods were allowed to continue until they reached their respective stopping time. To eval-

uate accuracy of classification decisions, a correct decision was defined as mastery if the

true ability of the examinee was greater than or equal to the test cutoff point and nonmastery

otherwise.
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Simulation Results

Table 1 presents the PCD, ATL, as well as average losses (explained in the following) for the

four stopping rules being compared.

Comparing the original (truncated) CI stopping rule with its curtailed version, the difference

in PCD was never higher than 0.009 = 0.9% at any ability value. In the opening section, it was

explained that in theory, the PCD of the curtailed stopping rule would always be the same as

that of the original method. The differences observed here between the PCDs of the two meth-

ods can be understood by revisiting the notion of ‘‘representative set’’ used in the simulation.

Due to the adaptive nature of the item selection algorithm, the identity of future items that

would be administered should the test continue was unknown. A set of approximate future items

was therefore needed for the curtailed stopping rule to compute the final modified ML ability

estimate of each examinee under hypothetical all-incorrect (or all-correct) future responses. In

reality, the original CI stopping rule might proceed with a different set of future items chosen

adaptively based on the examinee’s subsequent responses. If the two sets of items are exactly

the same, then the PCDs of the two methods will also be the same. This is the case, for example,

if test items are chosen based on maximizing Fisher information at the cutoff point as is com-

monly the case when the TSPRT is used as a stopping rule in AMT. Having seen that the cur-

tailed CI stopping rule did not sacrifice much classification accuracy compared with the original

method, it is of interest to see how many test items the former can save. Comparing the ATL of

the original CI stopping rule and that of its curtailed version, the latter was able to save an aver-

age of 2.62 items across all 13 u values. More specifically, the latter reduced the ATL by two

items or more at 9 of the 13 u values, by three items or more at 6 values, and by four items or

more at 2 values.

Turning to the more aggressive stochastically curtailed CI stopping rule (i.e., the rule

whereby the probability calculations in Equations 3 and 4 are evaluated at the modified ML

estimate ûk), its PCD was always within 0.033 = 3.3% of that of the original CI stopping rule.

The median PCD difference was only 1% in favor of the latter. However, the former reduced

the ATL by an average of 11.33 items across all 13 u values. Indeed, at 7 of the 13 u values,

the stochastically curtailed CI stopping rule was able to save more than 13 items compared with

the original stopping rule, and at 5 values, it was able to save more than 15 items.

The more conservative stochastically curtailed CI stopping rule (i.e., the rule whereby the

probability calculations in Equations 3 and 4 are evaluated at the lower and upper end point of

the CI of u, respectively) also enhanced efficiency. Its PCD was always within 0.013 = 1.3% of

the PCD of the original CI stopping rule. However, it reduced the ATL by an average of 5.61

items across all 13 u values. More specifically, it saved at least five test items at 9 of the 13 u

values and at least seven items at 6 values.

To further evaluate whether the shorter test lengths of the curtailed and stochastically cur-

tailed stopping rules are worth considering despite their slightly lower PCDs, each of these three

methods was compared with the original CI stopping rule using a classification efficiency index

proposed by Vos (2000). With 1W denoting a dummy variable that indicates an incorrect classi-

fication, CW denoting the cost of classification error, and L denoting test length, define

Loss = 1W 3CWð Þ+ L: ð7Þ

This index, which ranks different stopping rules by taking both PCD and ATL into account,

has also been used by Finkelman (2008, 2010) in the context of AMT with variants of the

TSPRT stopping rule.

Table 1 presents the average loss at each u value with CW = 100 (Vos, 2000). At all u values,

the more aggressive stochastically curtailed CI stopping rule proved to be the best termination
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criterion, followed by the more conservative approach, the curtailed version, and finally the

original CI stopping rule. The second simulation set that was performed with additional test

constraints showed the same relative performance of the four stopping rules. In particular, the

ATL reduction was greater when test constraints were imposed on the simulated tests, a pattern

consistent across all three stopping rules that were compared with the original CI method. This

is consistent with the finding of Finkelman (2008) where the TSPRT was used as the termina-

tion criterion.

Summary and Discussion

The purpose of this article was to implement curtailment and stochastic curtailment in the con-

text of AMT with the CI stopping rule. The goal of these methods is to provide savings of test

items without unduly compromising classification accuracy. Previous research (Finkelman,

2008, 2010) had demonstrated the success of both methods when the TSPRT stopping rule is

used. More recently, stochastic curtailment was also applied in conjunction with the GLR stop-

ping rule and was shown to yield increased efficiency while maintaining similar accuracy

(Huebner & Fina, 2014). However, as explained in the Introduction, no previous research had

applied curtailment or stochastic curtailment to the CI stopping rule, which is preferable to the

TSPRT and the GLR in some testing contexts.

The results of the simulation study confirmed the usefulness of the methods in terms of their

relative ATLs and PCDs compared with the original CI stopping rule. On a test with a maxi-

mum test length of 50 items and no constraints, the more aggressive stochastically curtailed

stopping rule reduced the ATL of the original CI stopping rule by an average of more than 11

items without reducing the PCD by more than 3.3%. Based on the loss function in Equation 7

with CW = 100 as in Vos (2000), the more aggressive stochastically curtailed CI stopping rule

was more efficient than the original CI method. In particular, the cost of misclassification CW

must be set at 483 for the original CI stopping rule to exhibit better average loss than its sto-

chastically curtailed version at even 1 of the 13 u values.

The results presented in this article were obtained using the modified ML ability estimate of

H.-H. Chang and Ying (2009). This ability estimate can be computed fairly easily by conducting

a grid search of the solution to Equation 5 when the inequality in Equation 6 holds. Otherwise,

the interim ability estimate will be assigned a value from a decreasing sequence frng. Using the

modified ML ability estimate, the regular CI stopping rule can be applied in the same manner as

if the MLE were used, due to the asymptotic equivalence of the two estimators. To invoke sto-

chastic curtailment, the normal approximation based on Theorem 1 provides a convenient way

to evaluate the probabilities in Equations 3 and 4. In practice, the regular ML ability estimate

can also be used if there is no concern regarding its uniqueness. As mentioned earlier, the simu-

lation study was also conducted using the ML ability estimate and the results were consistent.

As an illustration, Figure 1 in Appendix C (available online as a supplement to this article)

shows that the ML and the modified ML estimates were generally similar to each other. The fig-

ure shows comparisons between both types of estimators for four ability levels (20.6, 20.2,

+ 0.2, and + 0.6). For each ability level, the result displayed is the average across all 1,000

examinees. As each examinee receives different numbers of items, the results are only displayed

up to the 20th item, which is the minimum number of items that each examinee receives.

In this article, the authors focused on evaluating whether curtailment and stochastic curtail-

ment improve the CI stopping rule. With evidence favoring the curtailed and stochastically cur-

tailed CI stopping rules, a possible direction for future research is to compare them with the

curtailed and stochastically curtailed versions of the TSPRT and the GLR. In addition, perfor-

mance of the methods also needs to be further investigated under different structures of item

290 Applied Psychological Measurement 39(4)

 at UNIV OF SOUTHERN CALIFORNIA on October 14, 2015apm.sagepub.comDownloaded from 

http://apm.sagepub.com/


pools, different minimum and maximum test lengths, and other test constraints in addition to

content balancing and item exposure control. Extending the methods to classification tests with

more than 1 cutoff point also provides fruitful research opportunities, as many statewide tests

under No Child Left Behind typically classify students to multiple proficiency groups

(Finkelman, 2010).
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