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Abstract. In group sequential analysis, data is collected and analyzed in
batches until pre-defined stopping criteria are met. Inference in the parametric
setup typically relies on the limiting asymptotic multivariate normality of the
repeatedly computed maximum likelihood estimators (MLEs), a result first
rigorously proved by Jennison and Turnbull (1997) under general regular-
ity conditions. In this work, using Stein’s method we provide optimal order,
non-asymptotic bounds on the distance for smooth test functions between the
joint group sequential MLEs and the appropriate normal distribution under
the same conditions. Our results assume independent observations but allow
heterogeneous (i.e., non-identically distributed) data. We examine how the
resulting bounds simplify when the data comes from an exponential family.
Finally, we present a general result relating multivariate Kolmogorov distance
to smooth function distance which, in addition to extending our results to the
former metric, may be of independent interest.

1 Introduction

Sequential analysis is a powerful statistical framework in which sample sizes are not deter-
mined before conducting a study, and is the dominant statistical methodology in many types
of clinical trials (Bartroff, Lai and Shih, 2013), among other applications. In clinical trials in
particular, data is often collected and analyzed in groups until the conditions of a pre-defined
stopping criteria are met. In their authoritative textbook on this topic, Jennison and Turn-
bull (2000) note that group sequential analysis can significantly reduce the time required to
conduct clinical trials over the traditional fixed sample size designs.

Group sequential analysis (e.g., O’Brien and Fleming, 1979; Pocock, 1977) is typically
based on repeatedly computed (after each group) maximum likelihood estimators (MLEs),
and therefore all the properties of the statistical test (e.g., expected sample size, type I error
probability, power) are functions of the joint distribution of these repeatedly computed MLEs.
Suppose independent but not necessarily identically distributed observations Y1, . . . , Yn ∈R

t

are divided into K groups with nk denoting the number of observations seen up to and in-
cluding group k for k = 1, . . . ,K . Let fi(yi; θ) be the probability mass or density function of
Yi with θ ∈ Θ ⊂ R

d . We let θ̂k = θ̂k(Y1, Y2, . . . , Ynk
) ∈ R

d×1 be the MLE based on the obser-
vations in the first k groups and θ̂K = [θ̂⊺1 , θ̂

⊺
2 , . . . , θ̂

⊺
K ]⊺ ∈ R

q , where q = dK , be the group
sequential MLE. Here and throughout, (·)⊺ denotes transpose. Although the exact identifi-
cation of the distribution of θ̂K is often intractable, Jennison and Turnbull (1997a) showed
that it is asymptotically multivariate normal under suitable regularity conditions (see The-
orem 2.2). This result is perhaps unsurprising in light of the classical result that MLEs are
asymptotically normal under the same regularity conditions; see Theorem 2.1 below.
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Natural questions that then arise from this formulation are how many samples are required,
and in which groups should the samples be allocated, for the asymptotics to ‘kick in’ and
a normal approximation to become appropriate without introducing too much error? One
form of an answer to this question would be an upper bound on the error of the multivariate
normal approximation of the group sequential MLE. In this work we provide an optimal
order bound on the distance between the group sequential MLE and the appropriate normal
distribution under the same regularity conditions with heterogeneous, independent data (our
Theorem 3.1). The proof relies on Stein’s method (Stein, 1972) and Taylor series arguments
and has similarities to the approach of Anastasiou (2018) in which a bound was derived on the
multivariate MLE but without the joint, repeatedly computed group sequential structure. Our
result generalizes Anastasiou (2018) since when there is only one group our bound reduces
to that found in that work.

In this work, we give an upper bound on∣∣E[h(X)
]−E

[
h(Z)

]∣∣,
where Z is the standard multivariate normal, X is the normalized group sequential MLE,
and h is a test function in some function class H. In particular, for any three times dif-
ferentiable function h : Rq → R, we denote ‖h‖ := sup |h|,‖h‖1 := supi | ∂

∂xi
h|,‖h‖2 :=

supi,j | ∂2

∂xi∂xj
h|, and ‖h‖3 := supi,j,k | ∂3

∂xi∂xj ∂xk
h|. Then let

H = {h :Rq → R : h is three times differentiable with bounded

‖h‖,‖h‖1,‖h‖2,‖h‖3
}
. (1)

A non-asymptotic bound for the univariate MLE was first developed by Anastasiou and
Reinert (2017) and then expanded to the multivariate case by Anastasiou (2018). In Anas-
tasiou and Ley (2017) and Anastasiou and Gaunt (2020), the bounds for the univariate and
multivariate cases, respectively, were sharpened and simplified under the additional assump-
tion that the MLE follows a special form. Let Y = (Y 1, . . . ,Yn) be a random sample of n

i.i.d. t-dimensional random vectors, Θ ⊂ R
d , and θ̂n(Y ) be the resulting MLE. The special

form considered by these authors is

p
(
θ̂n(Y )

)= 1

n

n∑
i=1

g(Y i) = 1

n

n∑
i=1

(
g1(yi), . . . , gd(yi)

)⊺ (2)

for some g : Rt → R
d and p : Θ → R

d . One simple example of an MLE that follows this
form is the case of independent normal data with unknown mean and variance. Anastasiou
(2017) considers data that is m-dependent for identically distributed scalar parameter MLEs.
The group sequential MLE is necessarily multivariate and so this particular result will not be
generalizable to our setting.

Each of the bounds in Anastasiou and Reinert (2017), Anastasiou (2017, 2018), Anasta-
siou and Ley (2017), and Anastasiou and Gaunt (2020) are of optimal order O(n−1/2) and
defined in terms of slightly different H’s where in general the multidimensional bounds re-
quire additional bounded derivatives. All of these results use Stein’s method techniques and
require h ∈H to be at least bounded and absolutely continuous. Pinelis (2017) gives a bound
of the optimal order on the rate of convergence to normality for univariate MLEs in terms of
the Kolmogorov distance, H = {1{x ≤ a} : a ∈ R}. Unlike the above results this bound does
not make use of Stein’s method. Our Corollary 6.2 can be viewed as a generalization of this
to multivariate MLEs and the group sequential setting, and is the first that we are aware of by
any method.

Bounds derived from characteristic functions (Ulyanov, 1979, 1986, 1987) could be of use
in our setting, if not for two potential hurdles. First, in the multivariate setting these methods
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require independence. As one goal here is to develop a method that may later be applicable
to observations with some form of dependence, characteristic function methods appear to
be insufficient for that goal. Second, these methods do not provide explicit constants for the
bounds produced.

The rest of this paper is organized as follows. In Section 2, we introduce the remaining
needed background on MLEs and Stein’s method. In Section 3, we present our main result,
which we then specialize to exponential family distributions and the exponential distribution
in Section 4. And in Section 6, we present results relating multivariate Kolmogorov distance
to smooth function distance, extending our results to the former metric which gives bounds
to normality for multivariate MLEs in terms of Kolmogorov distance.

2 Background

2.1 Stein’s method

The results detailed below make heavy use of Stein’s method bounds in combination with
multivariate Taylor series arguments. We do not attempt to give a complete introduction to
Stein’s method here, but rather focus on the relevant multivariate results. Readers interested
in a more broad introduction are referred to Chen, Goldstein and Shao (2010).

Stein’s method for multivariate normal approximations hinges on the following multivari-
ate version of the Stein equation. Let f : Rq → R be twice differentiable and D2 the second
derivative, or Hessian matrix, of f . Then for h :Rq → R a multivariate Stein equation is

TrD2f (w) − w · ∇f (w) = h(w) − Nh.

Here Nh denotes the expectation Eh(Z), where Z is a q-dimensional standard normal vector.
The following bound of Goldstein and Rinott (1996) relates derivatives of the Stein equation
solution f to those of the test function h:∥∥∥∥ ∂kf (w)∏k

j=1 ∂wij

∥∥∥∥≤ 1

k

∥∥∥∥ ∂kh(w)∏k
j=1 ∂wij

∥∥∥∥, k ≥ 1, (3)

when the kth partial derivative of h exists.

2.2 Asymptotic normality of maximum likelihood estimators

For Y1, Y2, . . . , Yn ∈ R
t independent but not necessarily identically distributed, let fi(yi; θ)

be the probability mass or density function of Yi with the parameter space Θ an open sub-
set of R

d . Suppose the observations Y1, . . . , Yn are divided into K groups with nk denot-
ing the number of observations seen up to and including group k for k = 1, . . . ,K with
n = nK . For example, {Y1, Y2, . . . , Yn3} denotes all observations in the first 3 groups. We
let θ̂k = θ̂k(Y1, Y2, . . . , Ynk

) ∈ R
d denote the MLE based on the observations in the first k

groups, and Gk = {nk−1 + 1, . . . , nk} the set of indices of the observations in group k. The
likelihood function at analysis k is Lk(θ;y) =∏nk

i=1 fi(yi |θ) and the log-likelihood function
is �k(θ,y) = log(Lk(θ;y)).

Below we state well-known regularity conditions that are sufficient for the asymptotic nor-
mality of the fixed-sample MLE, which we record as Theorem 2.1. These conditions are also
sufficient for asymptotic normality in the group sequential setting, a result due to Jennison
and Turnbull (1997a) which we record here as Theorem 2.2.

(R1) θ̂n(Y )
p→ θ0, as n → ∞, where θ0 is the true parameter vector.
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(R2) The score function, Si(Yi; θ) = ∇θ logfi(Yi; θ) ∈ R
d×1 and the information matrix,

Ii(θ) = Varθ [Si(Yi; θ)] ∈ R
d×d, i = 1, . . . , n exist almost surely with respect to the

probability measure P.
(R3) Ii(θ) is a continuous function of θ,∀i = 1,2, . . . , n, almost surely with respect to P

and is a measurable function of Yi .
(R4) Eθ [Si(Yi; θ)] = 0d ∈R

d×1 where 0d is the d-column vector of all zeros.
(R5) Ii(θ) = Eθ [[∇ logfi(Yi; θ)][∇ logfi(Yi; θ)]⊺] = Eθ [−∇θS

⊺
i (Yi; θ)].

(R6) For

Īn(k, θ) = 1

n

nk∑
i=1

Ii(θ), k = 1, . . . ,K,

there exists a matrix Ī (k, θ) = limn→∞ Īn(k, θ). In addition, Īn(k, θ) and Ī (k, θ) are
symmetric and Ī (k, θ) is positive definite for all θ .

(R7) For some δ > 0, ∑
i Eθ0 |λ⊺Si(Yi; θ)|2+δ

n
2+δ

2

−→
n→∞ 0 for all λ ∈ R

d .

(R8) With ‖·‖ the ordinary Euclidean norm on R
d , then for i, j, u ∈ {1,2, . . . , d} there exists

ε > 0,C > 0, δ > 0 and random variables Bi,j,u(Yu) such that

(i) sup{| ∂2

∂θi∂θj
log(fu(Yu; t))||‖t − θ0‖ ≤ ε} ≤ Bi,j,u(Yu),

(ii) E|Bi,j,u(Yu)|1+δ ≤ C.

The classical result that MLEs are asymptotically normal is the following. See, for ex-
ample, van der Vaart (2007) for a proof, and Hoadley (1971) for a further discussion of the
sufficient conditions.

Theorem 2.1. Let Y1, Y2, . . . , Yn be independent random vectors with probability density (or
mass) function fi(yi; θ), where θ ∈ Θ ⊂ R

d . Assume that the MLE exists and is unique and
that the regularity conditions (R1)–(R8) hold. Also let Z ∼ Nd(0d,1d×d) be the standard
multivariate d-dimensional normal. Then

√
n
[
Īn(θ0)

] 1
2
(
θ̂n(Y ) − θ0

) d−→
n→∞ Z

Theorem 2.2 (Jennison and Turnbull (1997a)). Suppose that observations Yi are in-
dependent with distributions fi(yi; θ), where θ is d-dimensional, and that observations
Y1, . . . , Ynk

are available at analysis k, k = 1, . . . ,K . Let nk − nk−1 → ∞ such that
(nk − nk−1)/n → γk ∈ (0,1) for all k = 1, . . . ,K . Furthermore let θ̂k denote the MLE of
θ based on Y1, . . . , Ynk

. Suppose that the distributions fi are sufficiently regular so that
(R1)–(R8) hold for each k. Also let Z ∼ Nq(0q,1q×q) and θK

0 := [θ⊺0 , θ
⊺
0 , . . . , θ

⊺
0 ]⊺ ∈ R

q .
Then θ̂K = [θ̂⊺1 , . . . , θ̂

⊺
K ]⊺ is asymptotically multivariate normal,

√
n[Jn]− 1

2
(
θ̂K − θK

0
) d−→

n→∞ Z,

where,

Jn = Jn(θ0) =

⎡⎢⎢⎢⎢⎢⎢⎣
Ī−1
n (1, θ0) Ī−1

n (2, θ0) Ī−1
n (3, θ0) . . . Ī−1

n (K, θ0)

Ī−1
n (2, θ0) Ī−1

n (2, θ0) Ī−1
n (3, θ0)

Ī−1
n (3, θ0) Ī−1

n (3, θ0) Ī−1
n (3, θ0)

...
. . .

Ī−1
n (K, θ0) Ī−1

n (K, θ0) Ī−1
n (K, θ0) . . . Ī−1

n (K, θ0)

⎤⎥⎥⎥⎥⎥⎥⎦ .
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The regularity conditions (R1)–(R8) are assumed for limiting normality of the MLE in
the fixed-sample (Theorem 2.1) and group sequential (Theorem 2.2) cases, and in our finite-
sample bounds to these limits we assume (R1)–(R6), plus some specialized conditions anal-
ogous to (R7)–(R8) stated in those theorems, below. There is no simple description of all
distributions which satisfy these sets of regularity conditions, which depend not only on the
particular sequence of densities f1, f2, . . . and their parameterizations, but also on design
considerations such as group sizes which determine the amount of information accumulated
with each observation, or group of observations. For example, condition (R6) constrains the
experimental design so that the fraction of information contributed by any individual obser-
vation decreases to zero as the sample size increases. However, here we mention a few large
classes of distributions for which the needed distributional conditions can be shown to hold.
In the normal linear model, if the covariance structure is known then the normal limits hold
exactly. If the variance is unknown, then the asymptotic theory can be applied to the mean
and variance estimators for the joint distribution of group sequential Student’s t-statistics,
say (Jennison and Turnbull, 1997b). For non-normal data, the asymptotic theory applies to a
large class of parametric regression models, which Jennison and Turnbull (1997a, p. 1335)
write includes “the entire family of generalized linear models” (GLMs), again subject to
the above regularity and design conditions. There are well-known conditions which cause
MLEs to not exist in GLMs including separation, sparsity, parameter space constraints, and
ill-conditioned design matrices (see Verbeek, 1992), however the regularity conditions rule
these out; for more details on GLMs see McCullagh and Nelder (1989). A special case of
GLMs are non-regression exponential family models, to which we apply our results in Sec-
tion 4. Other authors have shown that the needed conditions can be verified even in some
spurious cases in GLMs, and non GLM-models. For example, Hoadley (1971) shows that
independent but non-identically distributed observations from censored exponential distribu-
tions satisfy the conditions, and Jennison and Turnbull (2000, Chapters 3, 13) show that the
log-rank test statistics and semi-parametric models for survival data subject to censoring have
the needed regularity for asymptotic normality of the MLE.

3 A bound to the normal for group sequential maximum likelihood estimators

The asymptotic theory of group sequential MLEs in Theorem 2.2 due to Jennison and Turn-
bull (1997a) guarantee asymptotic normality under the appropriate conditions. In this section,
we present results that give an error bound for the normal approximation under the same con-
ditions. In Section 3.1, we present the main result in Theorem 3.1, whose proof is in the
Supplementary Material (Aronowitz and Bartroff (2025)). After the theorem, we outline an
argument showing that the bound is asymptotically O(n−1/2). In Section 3.2, we discuss a
result of Gaunt (2016) allowing a relaxation on the number of needed derivatives of the test
function h, and apply this to achieve a similar relaxation to Reinert and Röllin (2009, The-
orem 2.1) in Theorem 3.3, which may be of independent interest. Then in Theorem 3.3, we
pass this relaxation along to Theorem 3.1.

3.1 Main result

For ease of presentation, we introduce the following additional notation. For

θK
0 := [θ⊺0 , θ

⊺
0 , . . . , θ

⊺
0
]⊺ ∈ R

q,

let Qi := [θ̂K − θK
0 ]i and Q(m) := maxi∈{1,...,q} Qi . Let Y ′

i be an independent copy of Y ,

ξij = [n− 1
2 Si(Yi, θ0)

]
j and ξ ′

ij = [n− 1
2 Si

(
Y ′

i , θ0
)]

j .
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Define

A =

⎡⎢⎢⎢⎢⎢⎢⎣
1d×d 0 0 . . . 0
1d×d 1d×d 0 0
1d×d 1d×d 1d×d 0

...
. . .

1d×d 1d×d 1d×d . . . 1d×d

⎤⎥⎥⎥⎥⎥⎥⎦ ∈ R
q×q,

J̃n = J̃n(θ) =

⎡⎢⎢⎢⎢⎢⎢⎣
Īn(1, θ) Īn(1, θ) Īn(1, θ) Īn(1, θ)

Īn(1, θ) Īn(2, θ) Īn(2, θ) . . . Īn(2, θ)

Īn(1, θ) Īn(2, θ) Īn(3, θ) Īn(3, θ)
...

. . .

Īn(1, θ) Īn(2, θ) Īn(3, θ) . . . Īn(K, θ)

⎤⎥⎥⎥⎥⎥⎥⎦ ∈ R
q×q,

where 1d×d is the d-dimensional identity matrix. We denote the nth row and mth column of
a matrix W as

nth row: Wn∗ = Wn,∗,
mth columns: W∗m = W∗,m.

When W is defined as a block matrix, we let W[i][j ] be the sub matrix in ‘block row’ i and
‘block column’ j . Similarly when W ∈ R

q is defined as a block vector, we let W[i] ∈ R
d be

the ith sub vector. We denote the nth block row and mth block column as

nth block row: W[n][∗] = W[n],[∗],
mth block columns: W[∗][m] = W[∗],[m].

We have the notation in place to state the main result of the paper.

Theorem 3.1. Let Y1, Y2, . . . , Yn be independent but possibly non-identically distributed
R

t -valued random vectors with probability density (or mass) functions fi(yi |θ), for which
the parameter space Θ is an open subset of Rd . Suppose the observations Y1, Y2, . . . , Ynk

are available at analysis k = 1, . . . ,K . Assume that the MLE θ̂k exists and is unique and
that conditions (R1)–(R6) are satisfied at each analysis k. In addition, assume that for
any θ0 there exists 0 < ε = ε(θ0) and functions Mk

iuj (y), ∀i, u, j = 1,2, . . . , d such that

| ∂3

∂θi∂θu∂θj
�k(θ, y)| ≤ Mk

iuj (y) for all θ ∈ Θ with |θj − θ0,j | < ε ∀j = 1,2, . . . , d . Also,

assume that E[( ∂3

∂θi∂θu∂θj
Mk

iuj (Y ))2||Q(m)| < ε] < ∞ for all k = 1, . . . ,K . Let {Y ′
i , i =

1,2, . . . , n} be an independent copy of {Yi, i = 1,2, . . . , n}. For Z ∼ Nq(0q,1q×q), h ∈ H,
where H is as in (1), it holds that∣∣E[h(√nJ

− 1
2

n

(
θ̂K − θK

0
))]−E

[
h(Z)

]∣∣
≤ ‖h‖1√

n
K1(θ0) + q2c2‖h‖2

4
K2(θ0) + q3c3‖h‖3

12
K3(θ0) + 2‖h‖

ε2 E

[ q∑
j=1

Q2
j

]
, (4)

where

K1(θ0) =
K∑

k1=1

min{k1+1,K}∑
k2=k1

d∑
l=1

d∑
j=1

∣∣Ī− 1
2

n (Gk2; θ0)lj
∣∣

×
{(

d∑
i=1

√
E
[[θ̂[k1] − θ0]i]2E( ∂2

∂θi∂θl

�k1(θ0, Y ) + nĪn(k1, θ0)li

)2
)
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+ 1

2

d∑
i=1

d∑
u=1

(
E
{([θ̂[k1] − θ0]i)2([θ̂[k1] − θ0]u)2}) 1

2
(
E
[(

M
k1
iul(Y )

)2||Q(m)| < ε
]) 1

2

}
,

K2(θ0) =
K∑

k=1

{
d∑

j=1

[∑
i∈Gk

Var
[
ξ2
ij

]] 1
2 + 2

∑
i<j

[ ∑
v∈Gk

Var[ξviξvj ]
] 1

2
}
,

K3(θ0) =
n∑

i=1

E

[
d∑

j=1

∣∣(ξ ′
ij − ξij

)∣∣]3

,

c = max
k∈{1,...,K}

∣∣Ī−1/2
n (Gk; θ0)

∣∣.
The theorem is proved in the Supplementary Material (Aronowitz and Bartroff (2025)).
Although the bound in the theorem appears complex, the fact that it is in general of optimal

order O(n−1/2) is not hard to see. Assume that [Īn(k, θ0)]j = O(1). By Theorem 2.2,
√

nE[θ̂k − θ0] → 0d .

Thus, E[θ̂k − θ0]j = o(1/
√

n). Again from Theorem 2.2,

nĪ
1
2
n (k, θ0)Cov[θ̂k]Ī

1
2
n (k, θ0) → 1d×d .

Using [Īn(k, θ0)]j = O(1), we see that nVar[[θ̂k]j ] → 1 and thus Var[[θ̂k]j ] = O(1/n). It
follows that

E
([θ̂k − θ0]2

j

)= Var
[[θ̂k]j ]+ (E[θ̂k − θ0]j )2 = O

(
n−1). (5)

From (R2) and (R6) and independence of Y1, . . . , Ynk
it can be seen that,

E

(
∂2

∂θi∂θl

�k(θ0, Y ) + nĪn(k, θ0)li

)2
=

nk∑
j=1

Var
[

∂2

∂θi∂θl

log
(
fj (Yj |θ0)

)]
(6)

showing that the left-hand side of the above equation is O(n). It follows from (5), (6), and

[Īn(k, θ0)]j = O(1) that K1(θ0) = O(1) and K3(θ0) = O(n− 1
2 ). That K2(θ0) = O(n− 1

2 ) de-
pends on the fourth moment of ξij being O( 1

n2 ). In general, we have reason to believe this
is true but have not proved it. Below we show for exponential families that K2 is indeed
O(n−1/2). When all this holds, the right-hand side of (4) is indeed O(n−1/2). For extensive
details of the order of the bound one may refer to the analysis in Section 4.2 for the simpler
case of exponential families.

3.2 Extensions of Theorem 3.1

Reinert and Röllin (2009, Theorem 2.1), which is the key tool in proving our Theorem 3.1,
relies on (3) to bound the derivatives of the multivariate Stein solution. Gaunt (2016, Propo-
sition 2.1) found new bounds on the derivatives of the Stein solution that require one fewer
derivative of the function h in (3). In Theorem 3.2, we use this result to relax the conditions
of Reinert and Röllin (2009, Theorem 2.1) by requiring that h be two times differentiable
instead of three. The price paid is an increase in the order of the bound with respect to d by
a factor of d1/2.

Theorem 3.2. Assume that (W,W ′) is an exchangeable pair of Rd -valued random vectors
such that

EW = 0,EWW⊺ = Σ
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with Σ ∈ R
d×d symmetric and positive definite. Suppose further that

E
[
W ′ − W |W ]= −ΛW + R

is satisfied for an invertible matrix Λ and a σ(W)-measurable random vector R. Then, if Z

has d-dimensional standard normal distribution, we have for every two times differentiable
function h,

∣∣Eh(W) −Eh
(
Σ

1
2 Z
)∣∣≤ d1/2∣∣Σ− 1

2
∣∣(‖h‖1√

π
A + ‖h‖2

√
2π

8
B

+
(√

π

2

∥∥h −Eh
(
Σ

1
2 Z
)∥∥+ 2d√

π
|Σ|1/2‖h‖

)
C

)
,

where, with λ(i) :=∑d
m=1 |(Λ−1)m,i |,

A =
d∑

i,j=1

λ(i)
√

Var
[
E
{(

W ′
i − Wi

)(
W ′

j − Wj

)|W}],
B =

d∑
i,j,k=1

λ(i)
E
∣∣(W ′

i − Wi

)(
W ′

j − Wj

)(
W ′

k − Wk

)∣∣,
C =

d∑
i=1

λ(i)
√

Var[Ri].

Proof. The proof is similar to the proof of Reinert and Röllin (2009, Theorem 2.1), with
Gaunt (2016, Proposition 2.1) used in place of (3). The details are thus omitted. □

Recently, Gaunt and Li (2023, Theorem 3.6) have an improved result which permits a
version of this bound that depends on |h|1 and |h|2 but not on |h|.

Next, we apply Theorem 3.2 to enhance our main result, Theorem 3.1.

Theorem 3.3. Let Y1, Y2, . . . , Yn be independent non-identically distributed R
t -valued ran-

dom vectors with probability density (or mass) functions fi(yi |θ), for which the param-
eter space Θ is an open subset of R

d . Suppose the observations Y1, Y2, . . . , Ynk
are

available at analysis k = 1, . . . ,K . Assume that the MLE θ̂k exists and is unique and
that conditions (R1)–(R6) are satisfied at each analysis k. In addition, assume that for
any θ0 there exists 0 < ε = ε(θ0) and functions Mk

iuj (y), ∀i, u, j = 1,2, . . . , d such that

| ∂3

∂θi∂θu∂θj
�k(θ, y)| ≤ Mk

iuj (y) for all θ ∈ Θ with |θj − θ0,j | < ε ∀j = 1,2, . . . , d . Also,

assume that E[( ∂3

∂θi∂θu∂θj
Mk

iuj (Y ))2||Q(m)| < ε] < ∞ for all k = 1, . . . ,K . Let {Y ′
i , i =

1,2, . . . , n} be an independent copy of {Yi, i = 1,2, . . . , n}. For Z ∼ Nq(0q,1q×q), h ∈ H,
where H is the class of all bounded functions with bounded first and second order derivatives,
it holds that∣∣E[h(√nJ

− 1
2

n

(
θ̂K − θK

0
))]−E

[
h(Z)

]∣∣
≤ ‖h‖1√

n
K1(θ0) + q3/2c2‖h‖1√

π
K2(θ0) +

√
2πq5/2c3‖h‖2

8
K3(θ0) + 2‖h‖

ε2 E

[ q∑
j=1

Q2
j

]
,
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where

K1(θ0) =
K∑

k1=1

min{k1+1,K}∑
k2=k1

d∑
l=1

d∑
j=1

∣∣Ī− 1
2

n (Gk2; θ0)lj
∣∣

×
{(

d∑
i=1

√
E
[[θ̂[k1] − θ0]i]2E( ∂2

∂θi∂θl

�k1(θ0, Y ) + nĪn(k1, θ0)li

)2
)

+ 1

2

d∑
i=1

d∑
u=1

(
E
{([θ̂[k1] − θ0]i)2([θ̂[k1] − θ0]u)2}) 1

2
(
E
[(

M
k1
iul(Y )

)2||Q(m)| < ε
]) 1

2

}
,

K2(θ0) =
K∑

k=1

{
d∑

j=1

[∑
i∈Gk

Var
[
ξ2
ij

]] 1
2 + 2

∑
i<j

[ ∑
v∈Gk

Var[ξviξvj ]
] 1

2
}
,

K3(θ0) =
n∑

i=1

E

[
d∑

j=1

∣∣(ξ ′
ij − ξij

)∣∣]3

,

c = max
k∈{1,...,K}

∣∣Ī−1/2
n (Gk; θ0)

∣∣.
Proof. The proof of Theorem 3.1 (see the Supplementary Material (Aronowitz and Bartroff
(2025))) only needs to be augmented by using Theorem 3.2 in place of Reinert and Röllin
(2009, Theorem 2.1) and noting that by

J̃−1/2
n A = Σ−1/2 = diag

(
Ī−1/2
n (G1; θ0), . . . , Ī

−1/2
n (GK; θ0)

)
,

we have |Σ−1/2| = c. With this adjustment, the rest of the proof is similar and the details are
thus omitted. □

Fang, Shao and Xu (2019) use Malliavin calculus techniques along with an exchangeable
pair approach to attain a near-optimal error bound on the Wasserstein distance for multivariate
approximations. Using this, a further improvement of Theorem 3.3 is possible which removes
the requirement that h have bounded second order derivatives at the expense of sacrificing op-
timal order convergence. Bonis (2020) obtained the optimal n−1/2 rate of convergence in the
Wasserstein distance in the multivariate central limit theorem for properly normalized sums
of i.i.d. random vectors. Although this does not apply directly to our the smooth test functions
used here, it could provide a different avenue to further improvements of Theorem 3.3.

4 Application to observations from an exponential family

In this section, we specialize Theorem 3.1 to the case where observations are i.i.d. from an
exponential family. We then show that this bound is of optimal order O(n−1/2) and calculate
the bound explicitly in the case of lifetime data from an exponential distribution.

4.1 Notation and setup

We slightly modify some of our notation to be more in line with the exponential family
literature. We say that the distribution of Y is a canonical multi-parameter exponential family
distribution if for η ∈ R

d the density of Y is

f (y;η) = exp

{
d∑

j=1

ηjTj (y) − A(η) + S(y)

}
1{y∈B}, (7)
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where B is the support of y that does not depend on η, and T (y) = [T1(y), . . . , Td(y)]⊺ is
the natural sufficient statistic. Here, the natural parameter η plays the role of the parameter of
interest θ above. The cumulant function A(η) satisfies

∂

∂ηi

A(η) = Eη

[
Ti(Y )

]
,Varη

[
T (Y )

]= H
(
A(η)

)= ∇2
ηA(η). (8)

To ease the notational burden, we use the following simplified notation for the mixed mo-
ments of the sufficient statistics:

μi = μi(η) = Eη

[
Ti(Y )

]
,

μij = μij (η) = Eη

[
Ti(Y )Tj (Y )

]
,

μijk = μijk(η) = Eη

[
Ti(Y )Tj (Y )Tk(Y )

]
.

In Section 4.2, we will also make use of the third partial derivative of A(η) which appear in
Theorem 3.1. We have

∂3

∂ηi∂ηj∂ηk

A(η)

=
∫

exp
{
S(y)

}
Ti(y)

[(
Tj (y) − ∂

∂ηj

A(η)

)(
Tk(y) − ∂

∂ηk

A(η)

)
a(y, η)

− a(y, η)
∂2

∂ηj∂ηk

A(η)

]
dy

= μijk − μijμk − μikμj + μiμjμk − Cov
[
Tj (Y ), Tk(Y )

]
μi

= μijk − μijμk − μikμj − μjkμi + 2μiμjμk. (9)

Define

με
iul = με

iul(η0)

= max{η:|ηj−η0,j |<ε,∀j∈{1,...,d}} |μilk − μilμk − μikμl − μlkμi + 2μiμlμk| (10)

The joint cumulant generating function of W = (T1(Y ), . . . , Td(Y ))⊺ is then

K(s) = logE
[
es⊺W ]= A(s + η) − A(η).

Via this expression, the cumulants can be found by taking derivatives of A(η), as follows:

∇snK(s)|s=0 = ∇snA(s + η)|s=0 = ∇ηnA(η).

Thus partial derivatives of A(η) yield joint cummulants of [T1(Y ), . . . , Td(Y )] which in turn
are polynomial functions of the moments of [T1(Y ), . . . , Td(Y )].

We now turn to MLEs of exponential families, which we denote by η̂. The score function
is

∇η�
(
yn;η)= ∇η

n∑
i=1

(
d∑

j=1

ηjTj (yi) − A(η) + S(yi)

)
=

n∑
i=1

T (yi) − n∇ηA(η)

and setting this equal to zero and using (8) yields

1

n

n∑
i=1

T (yi) = ∇ηA(η)|η=η̂ = Eη̂

[
T (Y )

]
.
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Since the log-likelihood of an exponential family is strictly concave, if the MLE exists it is a
global maximum. The mean function is

τ(η) = [τ1(η), . . . , τd(η)
]⊺ = [Eη

[
T1(Y )

]
, . . . ,Eη

[
Td(Y )

]]⊺
,

which we write compactly as

τ(η̂) = 1

n

n∑
i=1

T (yi) or, equivalently, η̂ = τ−1

(
1

n

n∑
i=1

T (yi)

)
. (11)

We note that (11) matches the form (2) and thus the bounds found in Anastasiou and
Ley (2017) and Anastasiou and Gaunt (2020) can be used on the distance to normality for
MLEs of exponential families. This fact was noted in Anastasiou and Ley (2017) for single
parameter exponential families but the generalization to multi-parameter exponential families
was not explicitly addressed in Anastasiou and Gaunt (2020).

4.2 Bound to normality for MLEs of exponential families

With the notation in place we are ready to state the specialization of Theorem 3.1 to exponen-
tial families in Corollary 4.1. The bound (12) that results can be written completely in terms
of mixed moments up to the third order of the sufficient statistics T1(Y ), . . . , Td(Y ), the true
value of the natural parameter η0, and the sample. Additional knowledge of the distribution,
in particular the cumulant function A(η) and S(Y ), is not required. Although the bound in
Corollary 4.1 inherits the optimal order of n−1/2 from Theorem 3.1, a direct analysis of the
bound’s order is more straightforward due to the observations being i.i.d., and we carry this
out following the corollary in Section 4.3.

Corollary 4.1. Let Y1, Y2, . . . , Yn be i.i.d. with probability density (or mass) function f (y|η),
for which the parameter space is an open subset of Rd . Suppose f is an exponential family
defined by (7) and the observations Y1, Y2, . . . , Ynk

are available at analysis k = 1, . . . ,K .
Assume that the MLE η̂k exists and that conditions (R1)–(R6) are satisfied at each anal-
ysis k. Let {Y ′

i , i = 1,2, . . . , n} be an independent copy of {Yi, i = 1,2, . . . , n}. For Z ∼
Nq(0q,1q×q), h ∈ H, where H is as in (1) and με

iul defined by (10), it holds that∣∣E[h(√nJ
− 1

2
n

(
η̂K − ηK

0
))]−E

[
h(Z)

]∣∣
≤ ‖h‖1√

n
K1(η0) + q2c2‖h‖2

4
K2(η0) + q3c3‖h‖3

12
K3(η0) + 2‖h‖

ε2 E

[ q∑
j=1

Q2
j

]
, (12)

where,

K1(η0) = 1

2

K∑
k1=1

min{k1+1,K}∑
k2=k1

nk1

( |Gk2 |
n

)− 1
2

d∑
l=1

d∑
j=1

Var−
1
2
[
T (Y )

]
lj

×
{

d∑
i=1

d∑
u=1

με
iul

(
E

[(
τ−1

(
1

nk1

nk1∑
s=1

T (ys)

)
i

− η0,i

)2

×
(
τ−1

(
1

nk1

nk1∑
s=1

T (ys)

)
u

− η0,u

)2]) 1
2
}
,

K2(η) = 1√
n

K∑
k=1

( |Gk|
n

) 1
2
{

d∑
j=1

[
Var
[(

Tj (Y ) − μj(η0)
)2]] 1

2
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+ 2
∑
i<j

[
Var
[(

Ti(Y ) − μi(η0)
)(

Tj (Y ) − μj(η0)
)]] 1

2

}
,

K3(η0) = 1√
n
E

[
d∑

j=1

∣∣Tj

(
Y ′)− Tj (Y )

∣∣]3

,

c = ∣∣Var−
1
2
[
T (Y )

]∣∣ max
k∈{1,...,K}

( |Gk|
n

)− 1
2
.

4.3 The bound in Corollary 4.1 is of order O(n−1/2)

In Section 3, we analyzed the order of the bound in Theorem 3.1 and found it is of order
n−1/2 given some mild assumptions. It is still O(n−1/2) when specialized to the exponential
family case is no surprise, and can be seen more directly here. Letting |Gk|/n → γk ∈ (0,1)

as in Theorem 2.2, the term c in the bound satisfies

c → ∣∣Var−
1
2
[
T (Y )

]∣∣ max
k∈{1,...,K}γ

− 1
2

k .

and thus c = O(1). For the same reason, K2(η) = O(n−1/2). The function K3(η) is exactly
equal to a constant times n−1/2 and so is O(n−1/2). The last term in the bound,

2‖h‖
ε2 E

[ q∑
j=1

Q2
j

]
,

depends on the order of

E
[
Q2

j

]= E
[
(η̂j − η0,j )

2]= Var[η̂j ] + (E[Qj ])2 =O
(
n−1).

This leaves only K1(η0) to be considered. For the entire bound to be O(n−1/2), K1(η) should
be O(1) since K1(η) is multiplied by n−1/2. This is the case if and only if(

E

[(
τ−1

(
1

nk1

nk1∑
s=1

T (ys)

)
i

− η0,i

)2(
τ−1

(
1

nk1

nk1∑
s=1

T (ys)

)
u

− η0,u

)2]) 1
2

is O(n−1). By the Cauchy–Schwarz inequality, the above is bounded by(
E
[
(η̂i − η0,i)

4]
E
[
(η̂u − η0,u)

4]) 1
4 .

Thus the desired order follows from the fact that the fourth central moment of a compo-
nent of the MLE is O(n−2); see de A. Cysneiros et al. (2001, Equation 2) for the univariate
exponential case and Peers and Iqbal (1985) for the general multivariate case.

The choice of ε in the bound should be handled on a case-by-case basis and can be chosen
to minimize the sum of the K1 term and the final 2‖h‖

ε2 term. Notice that smaller ε increases
the final term while decreases με

iul in K2.

4.4 Example: The exponential distribution

In this section, we apply Corollary 4.1 to the case where observations are i.i.d. from an expo-
nential distribution. We use the natural parameterization

T (y) = −y, A(η) = − log(η), S(y) = 0, B = [0,∞).

We record the application of Corollary 4.1 to this distribution in the following corollary,
in which we utilize that η̂k ∼ Inv-Gamma(nk, nkλ) and με

iul = 2/(η0 − ε)3. The remaining
calculations are similar to, and simpler than, those for Corollary 4.1 and so we omit them.
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Corollary 4.2. Let Y1, Y2, . . . , Yn be independent such that Yi ∼ Exp(η0) with E[Yi] = 1/η0.
Suppose the observations Y1, Y2, . . . , Ynk

are available at analysis k = 1, . . . ,K . For Z ∼
Nq(0q,1q×q), h ∈ H, where H is as in (1), it holds that∣∣E[h(√nJ

− 1
2

n

(
η̂K − ηK

0
))]−E

[
h(Z)

]∣∣
≤ ‖h‖1√

n
K1(η0) + 2K2c2‖h‖2

η2
0
√

n
K2 + 2η2

0‖h‖
ε2

K∑
k=1

nk + 2

(nk − 1)(nk − 2)
, (13)

where

K1(η0) = η3
0

√
3

(η0 − ε)3

K∑
k1=1

min{k1+1,K}∑
k2=k1

( |Gk2 |
n

)− 1
2

√√√√ n4
k1

+ (46
3 )n3

k1
+ 8n2

k1

(nk1 − 1) · · · (nk1 − 4)
,

K2 =
K∑

k=1

( |Gk|
n

) 1
2

and c = max
k∈{1,...,K}

( |Gk|
n

)− 1
2
.

5 Data and simulation example

In this section, we exhibit a data set of time intervals between cancer cell detections that fits
the set up of this paper, and compute our bound for the exponential distribution in Corol-
lary 4.2 in the setting of the data set. We continue to use the notation from Section 4.4 for the
exponential distribution.

The exponential distribution has been used (Coumans et al., 2012; Zhu et al., 2017, 2021)
to model the time intervals between detections of cancer cells circulating in blood, known as
circulating tumor cells (CTCs), which are established biomarkers of cancer metastasis, and
therefore their temporal dynamics are important for understanding the mechanisms underly-
ing tumor cell dissemination (Zhu et al., 2021). Williams et al. (2020) analyze Lewis lung
carcinoma CTC counts and time intervals drawn from tumor bearing mice at various times
up to 34 days after inoculation.1 Williams et al. (2020, Figure 1H) consider measurements
at 5,13,18,25, and 28 days post-inoculation which, along with the final analysis at 34 days,
we take as the K = 6 time points in a group sequential analysis which, in their data, has
cumulative sample sizes

nCTC := (n1, . . . , n6) = (19,119,261,365,483,589). (14)

Figure 1 shows histograms (on the density scale) of the time interval data Y1, . . . , Ynk
at

analyses k = 1, . . . ,6, along with the estimated exponential rates η̂k and the fitted exponential
density for each η̂k . The rate estimates are somewhat stable, but tend to increase slightly
from η̂1 = 0.00217 (to 3 significant figures) after the first analysis on day 5, to the final
estimate η̂6 = 0.00309 at day 34 on the complete data.

The CTC interval data in Figure 1 is a single realization of the data Y1, . . . , YnK
and vector

of estimates η̂K described in Section 4.4. In order to investigate the behavior of the bound
in Corollary 4.2, we simulated data in the setting of the CTC interval data in order to es-
timate the left hand side of (13), and computed the corresponding right hand side, as fol-
lows. Taking η0 = 0.00309, the estimated rate from the complete CTC interval data, and the
same number K = 6 of analyses, we simulated exponential data with sample sizes M · nCTC

1More details on the data acquisition can be found in Williams et al. (2020), and the data is available from
https://github.com/mark-niedre/Williams-CTC-Dynamics-2020.

https://github.com/mark-niedre/Williams-CTC-Dynamics-2020
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Figure 1 Histograms of CTC interval data from Williams et al. (2020) at K = 6 analyses, with the estimated
exponential rates η̂k and the corresponding fitted exponential densities.

proportional to the actual sample sizes (14) from the CTC data. For the values of the mul-
tiplier M in Table 1, the distributional distance (denoted by D̂ in the table) on the left hand
side of (13) was estimated by simulating 5000 exponential data sets and standard normal
vectors Z ∈ R

6. The standardizing matrix
√

nJ
−1/2
n in (13) was calculated as V −1/2 where

V is the data-dependent K × K covariance matrix with (k, �) entry equal to η̂2
k∨�/nk∨�. The

bound on the right hand side of (13), denoted by B in the table, was calculated by numer-
ically optimizing over the free parameter ε. This was done using the Gaussian test func-
tion h(z1, . . . , zK) = (2π)−K/2 exp(−∑K

k=1 z2
k/2), a common choice in studies of distribu-

tional distances (e.g., Barron, 1993; Cucker and Zhou, 2007; Smola and Schölkopf, 2004), for
which basic calculations give |h| = (2π)−K/2, |h|1 = (2π)−K/2e−1/2, and |h|2 = (2π)−K/2.
The table also includes the relative error (B − D̂)/D̂ = B/D̂ − 1 of B as an estimator of D̂,
to 3 significant digits.

In each successive row of the table, M and hence the sample size increases by a factor
of 10, and the bound B consistently decreases by a factor close to 1/

√
10 ≈ 0.32, reflecting

the fact that the bound is asymptotically 1/
√

n, as discussed in Section 4.3. The estimated
distance D̂ remains relatively stable for the sample sizes in the table. Although the values of
the multiplier M required to make the relative error small are sizeable, they are comparable
those found for the state-of-the-art smooth function distance bounds for MLEs and related



Bounds to the group sequential normal limit 15

Table 1 Simulation study of the bound B on the right-hand side of (13), the estimated distributional difference D̂

on the left-hand side of (13), and their relative error for 5000 exponential data sets per row simlulated with
rate η0 = 0.00309 and sample sizes M ·nCTC with nCTC given by (14) from the CTC interval data, multiplier M ,
and Gaussian test function h

Multiplier M Bound B Distance D̂ Rel. Error B/D̂ − 1

1 0.906243 0.00048 1880
101 0.283007 0.00046 612
102 0.089108 0.00050 178
103 0.028112 0.00049 56.4
104 0.008877 0.00051 16.5
105 0.002805 0.00050 4.58
106 0.000886 0.00049 0.823

estimators in non-group-sequential settings by Anastasiou (2018) and Anastasiou and Gaunt
(2020), which do not have the additional variation due to mulitple group sequential analyses
considered here.

6 A multivariate Kolmogorov/smooth function bound

In this section, we give a general upper bound on the multivariate Kolmogorov distance

dkol(W,Z) = sup
x∈Rp

∣∣P(W ≤ x) − P(Z ≤ x)
∣∣ (15)

of two p-dimensional random vectors W,Z, in terms of the smooth function class distances,
such as those in our results in Sections 3 and 4. In (15), P(W ≤ x) is the probability of W

being in the p-dimensional “lower quadrant” {W ≤ x} = {W1 ≤ x1, . . . ,Wp ≤ xp}. These
bounds may be of independent interest, but another reason we include them here is because
they open the door to applying our smooth function bounds for the group sequential MLEs
to the normal, to Kolmogorov distance, which may be desirable in statistical applications.

First, we modify our notation slightly to show more explicitly the dependence on dimen-
sion and derivative order. For k = (k1, . . . , kp) ∈ N

p
0 , let |k| = ∑p

i=1 ki , and for functions
h :Rp → R whose partial derivatives

hk(x) = ∂k1+···+kph

∂k1x1 . . . ∂kpxp

exist for all 0 ≤ |k| ≤ m,

and ‖·‖ the supremum norm, let L∞
m (Rp) be the collection of all functions h : Rp → R with

‖h‖L∞
m (Rp) = max

0≤|k|≤m

∥∥h(k)
∥∥

finite. For random vectors X and Y in R
p , letting

Hm,∞,p = {h ∈ L∞
m

(
R

p) : ‖h‖L∞
m (Rp) ≤ 1

}
,

define

dm,∞,p(X,Y ) = ∥∥L(X) −L(Y )
∥∥
Hm,∞,p

= sup
h∈Hm,∞,p

∣∣E[h(X)
]−E

[
h(Y )

]∣∣.
Connecting to the previous sections, note that, for example, Theorem 3.1 gives a bound on
d3,∞,q between the standardized group sequential MLE and the q-dimensional standard nor-
mal, and Theorem 3.3 a bound on d2,∞,q .
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We first state our general result in Theorem 6.1, and then specialize to the m = 3 case
in Corollary 6.2. Both are proved in the Supplementary Material (Aronowitz and Bartroff
(2025)).

Theorem 6.1. Suppose W and Z are p-dimensional, p ≥ 2, random vectors such that Z has
a density bounded by a constant C1. Then there exists a constant C2 ≥ 1 that depends only
on m, m ≥ 1, such that

dkol(W,Z) ≤ dm,∞,p(W,Z)
p−1

m+p−1
(
C

p
2 + p + C1dm,∞,p(W,Z)

1
m+p−1

)
.

Corollary 6.2. The Kolmogorov distance is bounded by d3,∞,p(·, ·) as follows,

dkol(W,Z) ≤ d3,∞,p(W,Z)
p−1
2+p

(
52.5p + p + d3,∞,p(W,Z)

1
2+p

(2π)p/2

)
.

Gaunt and Li (2023, Proposition 2.4) also obtained bounds on dkol(W,Z) in terms of
dm,∞,p , but those bounds do not explicitly show the dependence on the dimension p which
is important in statistical applications. This is especially true in the group sequential testing
considered here, where it represents the maximum number of groups and thus is an important
design consideration.

7 Conclusion and future directions

We have generalized the results of Anastasiou and Reinert (2017) and Anastasiou (2018) to
find optimal order bounds for the joint distribution of a sequence of maximum likelihood
estimates based on accumulating data. The approximate normality of this joint distribution is
an essential assumption underlying the statistics of group sequential hypothesis testing, the
dominant paradigm in clinical trials. The specialization of this bound to exponential families
in Corollary 4.1 is the simplest such bound covering this case even in the non-sequential
setting, that we are aware of.

A direction in which these results may be generalized is to examine log-likelihood func-
tions of the form ∑

i∈Gk

logfi(Yi, θ) + gk(Yk, θ),

with Yk = {Yi : i ∈ Gk}. This form may provide a way of relaxing the independence as-
sumption between samples that could be amenable to Stein’s method. It is also the form of
some log-likelihood functions of generalized linear mixed models (GLMMs) with random
stage effects, for example, the GLMM with Poisson response variable and canonical log link
function.
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